Evaluate
\frac{n^{2}}{m^{4}}+\frac{1}{mn}
Expand
\frac{n^{2}}{m^{4}}+\frac{1}{mn}
Share
Copied to clipboard
\frac{\left(n^{-3}m^{3}+1\right)m^{-3}}{n^{-2}m}
Factor the expressions that are not already factored.
\frac{n^{-3}m^{3}+1}{n^{-2}m^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1+\left(\frac{1}{n}m\right)^{3}}{n^{-2}m^{4}}
Expand the expression.
\frac{1+\left(\frac{m}{n}\right)^{3}}{n^{-2}m^{4}}
Express \frac{1}{n}m as a single fraction.
\frac{1+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
To raise \frac{m}{n} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{n^{3}}{n^{3}}+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{n^{3}}{n^{3}}.
\frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}}
Since \frac{n^{3}}{n^{3}} and \frac{m^{3}}{n^{3}} have the same denominator, add them by adding their numerators.
\frac{n^{3}+m^{3}}{n^{3}n^{-2}m^{4}}
Express \frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}} as a single fraction.
\frac{n^{3}+m^{3}}{n^{1}m^{4}}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
\frac{n^{3}+m^{3}}{nm^{4}}
Calculate n to the power of 1 and get n.
\frac{\left(n^{-3}m^{3}+1\right)m^{-3}}{n^{-2}m}
Factor the expressions that are not already factored.
\frac{n^{-3}m^{3}+1}{n^{-2}m^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1+\left(\frac{1}{n}m\right)^{3}}{n^{-2}m^{4}}
Expand the expression.
\frac{1+\left(\frac{m}{n}\right)^{3}}{n^{-2}m^{4}}
Express \frac{1}{n}m as a single fraction.
\frac{1+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
To raise \frac{m}{n} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{n^{3}}{n^{3}}+\frac{m^{3}}{n^{3}}}{n^{-2}m^{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{n^{3}}{n^{3}}.
\frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}}
Since \frac{n^{3}}{n^{3}} and \frac{m^{3}}{n^{3}} have the same denominator, add them by adding their numerators.
\frac{n^{3}+m^{3}}{n^{3}n^{-2}m^{4}}
Express \frac{\frac{n^{3}+m^{3}}{n^{3}}}{n^{-2}m^{4}} as a single fraction.
\frac{n^{3}+m^{3}}{n^{1}m^{4}}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
\frac{n^{3}+m^{3}}{nm^{4}}
Calculate n to the power of 1 and get n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}