Solve for m
m=\frac{23}{12}-p-z
Solve for p
p=\frac{23}{12}-m-z
Share
Copied to clipboard
\frac{m+p+z}{\frac{7}{6}+\frac{3}{4}}=\frac{4}{4}
Add \frac{1}{2} and \frac{2}{3} to get \frac{7}{6}.
\frac{m+p+z}{\frac{23}{12}}=\frac{4}{4}
Add \frac{7}{6} and \frac{3}{4} to get \frac{23}{12}.
\frac{m+p+z}{\frac{23}{12}}=1
Divide 4 by 4 to get 1.
\frac{m}{\frac{23}{12}}+\frac{p}{\frac{23}{12}}+\frac{z}{\frac{23}{12}}=1
Divide each term of m+p+z by \frac{23}{12} to get \frac{m}{\frac{23}{12}}+\frac{p}{\frac{23}{12}}+\frac{z}{\frac{23}{12}}.
\frac{m}{\frac{23}{12}}+\frac{z}{\frac{23}{12}}=1-\frac{p}{\frac{23}{12}}
Subtract \frac{p}{\frac{23}{12}} from both sides.
\frac{m}{\frac{23}{12}}=1-\frac{p}{\frac{23}{12}}-\frac{z}{\frac{23}{12}}
Subtract \frac{z}{\frac{23}{12}} from both sides.
\frac{12}{23}m=-\frac{12p}{23}-\frac{12z}{23}+1
The equation is in standard form.
\frac{\frac{12}{23}m}{\frac{12}{23}}=\frac{-\frac{12p}{23}-\frac{12z}{23}+1}{\frac{12}{23}}
Divide both sides of the equation by \frac{12}{23}, which is the same as multiplying both sides by the reciprocal of the fraction.
m=\frac{-\frac{12p}{23}-\frac{12z}{23}+1}{\frac{12}{23}}
Dividing by \frac{12}{23} undoes the multiplication by \frac{12}{23}.
m=\frac{23}{12}-p-z
Divide 1-\frac{12p}{23}-\frac{12z}{23} by \frac{12}{23} by multiplying 1-\frac{12p}{23}-\frac{12z}{23} by the reciprocal of \frac{12}{23}.
\frac{m+p+z}{\frac{7}{6}+\frac{3}{4}}=\frac{4}{4}
Add \frac{1}{2} and \frac{2}{3} to get \frac{7}{6}.
\frac{m+p+z}{\frac{23}{12}}=\frac{4}{4}
Add \frac{7}{6} and \frac{3}{4} to get \frac{23}{12}.
\frac{m+p+z}{\frac{23}{12}}=1
Divide 4 by 4 to get 1.
\frac{m}{\frac{23}{12}}+\frac{p}{\frac{23}{12}}+\frac{z}{\frac{23}{12}}=1
Divide each term of m+p+z by \frac{23}{12} to get \frac{m}{\frac{23}{12}}+\frac{p}{\frac{23}{12}}+\frac{z}{\frac{23}{12}}.
\frac{p}{\frac{23}{12}}+\frac{z}{\frac{23}{12}}=1-\frac{m}{\frac{23}{12}}
Subtract \frac{m}{\frac{23}{12}} from both sides.
\frac{p}{\frac{23}{12}}=1-\frac{m}{\frac{23}{12}}-\frac{z}{\frac{23}{12}}
Subtract \frac{z}{\frac{23}{12}} from both sides.
\frac{12}{23}p=-\frac{12m}{23}-\frac{12z}{23}+1
The equation is in standard form.
\frac{\frac{12}{23}p}{\frac{12}{23}}=\frac{-\frac{12m}{23}-\frac{12z}{23}+1}{\frac{12}{23}}
Divide both sides of the equation by \frac{12}{23}, which is the same as multiplying both sides by the reciprocal of the fraction.
p=\frac{-\frac{12m}{23}-\frac{12z}{23}+1}{\frac{12}{23}}
Dividing by \frac{12}{23} undoes the multiplication by \frac{12}{23}.
p=\frac{23}{12}-m-z
Divide 1-\frac{12m}{23}-\frac{12z}{23} by \frac{12}{23} by multiplying 1-\frac{12m}{23}-\frac{12z}{23} by the reciprocal of \frac{12}{23}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}