Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Multiply \frac{m+n}{2m} times \frac{m-n}{5m^{3}n} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Multiply \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} times \frac{1}{10n^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Multiply 2 and 5 to get 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Multiply 10 and 10 to get 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Multiply \frac{m+n}{2m} times \frac{m-n}{5m^{3}n} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Multiply \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} times \frac{1}{10n^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Multiply 2 and 5 to get 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Multiply 10 and 10 to get 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.