Evaluate
\frac{m^{2}-n^{2}}{100n^{3}m^{4}}
Expand
-\frac{n^{2}-m^{2}}{100n^{3}m^{4}}
Share
Copied to clipboard
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Multiply \frac{m+n}{2m} times \frac{m-n}{5m^{3}n} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Multiply \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} times \frac{1}{10n^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Multiply 2 and 5 to get 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Multiply 10 and 10 to get 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Multiply \frac{m+n}{2m} times \frac{m-n}{5m^{3}n} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Multiply \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} times \frac{1}{10n^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
Multiply 2 and 5 to get 10.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
Multiply 10 and 10 to get 100.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}