Evaluate
-3x+\frac{n}{2m}
Expand
-3x+\frac{n}{2m}
Graph
Share
Copied to clipboard
\frac{m+5n-\left(m-n\right)}{12m}-3x
Since \frac{m+5n}{12m} and \frac{m-n}{12m} have the same denominator, subtract them by subtracting their numerators.
\frac{m+5n-m+n}{12m}-3x
Do the multiplications in m+5n-\left(m-n\right).
\frac{6n}{12m}-3x
Combine like terms in m+5n-m+n.
\frac{n}{2m}-3x
Cancel out 6 in both numerator and denominator.
\frac{n}{2m}+\frac{-3x\times 2m}{2m}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x times \frac{2m}{2m}.
\frac{n-3x\times 2m}{2m}
Since \frac{n}{2m} and \frac{-3x\times 2m}{2m} have the same denominator, add them by adding their numerators.
\frac{n-6xm}{2m}
Do the multiplications in n-3x\times 2m.
\frac{m+5n-\left(m-n\right)}{12m}-3x
Since \frac{m+5n}{12m} and \frac{m-n}{12m} have the same denominator, subtract them by subtracting their numerators.
\frac{m+5n-m+n}{12m}-3x
Do the multiplications in m+5n-\left(m-n\right).
\frac{6n}{12m}-3x
Combine like terms in m+5n-m+n.
\frac{n}{2m}-3x
Cancel out 6 in both numerator and denominator.
\frac{n}{2m}+\frac{-3x\times 2m}{2m}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x times \frac{2m}{2m}.
\frac{n-3x\times 2m}{2m}
Since \frac{n}{2m} and \frac{-3x\times 2m}{2m} have the same denominator, add them by adding their numerators.
\frac{n-6xm}{2m}
Do the multiplications in n-3x\times 2m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}