Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m+4}{\left(m-2\right)\left(m+4\right)}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Factor the expressions that are not already factored in \frac{m+4}{m^{2}+2m-8}.
\frac{1}{m-2}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Cancel out m+4 in both numerator and denominator.
\frac{1}{m-2}-\frac{4}{\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Factor m^{2}+8m+16.
\frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2 and \left(m+4\right)^{2} is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{1}{m-2} times \frac{\left(m+4\right)^{2}}{\left(m+4\right)^{2}}. Multiply \frac{4}{\left(m+4\right)^{2}} times \frac{m-2}{m-2}.
\frac{\left(m+4\right)^{2}-4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Since \frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+8m+16-4m+8}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Do the multiplications in \left(m+4\right)^{2}-4\left(m-2\right).
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Combine like terms in m^{2}+8m+16-4m+8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{\left(m-2\right)\left(m+4\right)}
Factor m^{2}+2m-8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+4\right)^{2} and \left(m-2\right)\left(m+4\right) is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{m-4}{\left(m-2\right)\left(m+4\right)} times \frac{m+4}{m+4}.
\frac{m^{2}+4m+24-\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
Since \frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+4m+24-m^{2}-4m+4m+16}{\left(m-2\right)\left(m+4\right)^{2}}
Do the multiplications in m^{2}+4m+24-\left(m-4\right)\left(m+4\right).
\frac{4m+40}{\left(m-2\right)\left(m+4\right)^{2}}
Combine like terms in m^{2}+4m+24-m^{2}-4m+4m+16.
\frac{4m+40}{m^{3}+6m^{2}-32}
Expand \left(m-2\right)\left(m+4\right)^{2}.
\frac{m+4}{\left(m-2\right)\left(m+4\right)}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Factor the expressions that are not already factored in \frac{m+4}{m^{2}+2m-8}.
\frac{1}{m-2}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Cancel out m+4 in both numerator and denominator.
\frac{1}{m-2}-\frac{4}{\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Factor m^{2}+8m+16.
\frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2 and \left(m+4\right)^{2} is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{1}{m-2} times \frac{\left(m+4\right)^{2}}{\left(m+4\right)^{2}}. Multiply \frac{4}{\left(m+4\right)^{2}} times \frac{m-2}{m-2}.
\frac{\left(m+4\right)^{2}-4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Since \frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+8m+16-4m+8}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Do the multiplications in \left(m+4\right)^{2}-4\left(m-2\right).
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Combine like terms in m^{2}+8m+16-4m+8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{\left(m-2\right)\left(m+4\right)}
Factor m^{2}+2m-8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+4\right)^{2} and \left(m-2\right)\left(m+4\right) is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{m-4}{\left(m-2\right)\left(m+4\right)} times \frac{m+4}{m+4}.
\frac{m^{2}+4m+24-\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
Since \frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+4m+24-m^{2}-4m+4m+16}{\left(m-2\right)\left(m+4\right)^{2}}
Do the multiplications in m^{2}+4m+24-\left(m-4\right)\left(m+4\right).
\frac{4m+40}{\left(m-2\right)\left(m+4\right)^{2}}
Combine like terms in m^{2}+4m+24-m^{2}-4m+4m+16.
\frac{4m+40}{m^{3}+6m^{2}-32}
Expand \left(m-2\right)\left(m+4\right)^{2}.