Evaluate
\frac{4\left(m+10\right)}{\left(m-2\right)\left(m+4\right)^{2}}
Expand
\frac{4\left(m+10\right)}{\left(m-2\right)\left(m+4\right)^{2}}
Share
Copied to clipboard
\frac{m+4}{\left(m-2\right)\left(m+4\right)}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Factor the expressions that are not already factored in \frac{m+4}{m^{2}+2m-8}.
\frac{1}{m-2}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Cancel out m+4 in both numerator and denominator.
\frac{1}{m-2}-\frac{4}{\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Factor m^{2}+8m+16.
\frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2 and \left(m+4\right)^{2} is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{1}{m-2} times \frac{\left(m+4\right)^{2}}{\left(m+4\right)^{2}}. Multiply \frac{4}{\left(m+4\right)^{2}} times \frac{m-2}{m-2}.
\frac{\left(m+4\right)^{2}-4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Since \frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+8m+16-4m+8}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Do the multiplications in \left(m+4\right)^{2}-4\left(m-2\right).
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Combine like terms in m^{2}+8m+16-4m+8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{\left(m-2\right)\left(m+4\right)}
Factor m^{2}+2m-8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+4\right)^{2} and \left(m-2\right)\left(m+4\right) is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{m-4}{\left(m-2\right)\left(m+4\right)} times \frac{m+4}{m+4}.
\frac{m^{2}+4m+24-\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
Since \frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+4m+24-m^{2}-4m+4m+16}{\left(m-2\right)\left(m+4\right)^{2}}
Do the multiplications in m^{2}+4m+24-\left(m-4\right)\left(m+4\right).
\frac{4m+40}{\left(m-2\right)\left(m+4\right)^{2}}
Combine like terms in m^{2}+4m+24-m^{2}-4m+4m+16.
\frac{4m+40}{m^{3}+6m^{2}-32}
Expand \left(m-2\right)\left(m+4\right)^{2}.
\frac{m+4}{\left(m-2\right)\left(m+4\right)}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Factor the expressions that are not already factored in \frac{m+4}{m^{2}+2m-8}.
\frac{1}{m-2}-\frac{4}{m^{2}+8m+16}-\frac{m-4}{m^{2}+2m-8}
Cancel out m+4 in both numerator and denominator.
\frac{1}{m-2}-\frac{4}{\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Factor m^{2}+8m+16.
\frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2 and \left(m+4\right)^{2} is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{1}{m-2} times \frac{\left(m+4\right)^{2}}{\left(m+4\right)^{2}}. Multiply \frac{4}{\left(m+4\right)^{2}} times \frac{m-2}{m-2}.
\frac{\left(m+4\right)^{2}-4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Since \frac{\left(m+4\right)^{2}}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{4\left(m-2\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+8m+16-4m+8}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Do the multiplications in \left(m+4\right)^{2}-4\left(m-2\right).
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{m^{2}+2m-8}
Combine like terms in m^{2}+8m+16-4m+8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{m-4}{\left(m-2\right)\left(m+4\right)}
Factor m^{2}+2m-8.
\frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}}-\frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-2\right)\left(m+4\right)^{2} and \left(m-2\right)\left(m+4\right) is \left(m-2\right)\left(m+4\right)^{2}. Multiply \frac{m-4}{\left(m-2\right)\left(m+4\right)} times \frac{m+4}{m+4}.
\frac{m^{2}+4m+24-\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}}
Since \frac{m^{2}+4m+24}{\left(m-2\right)\left(m+4\right)^{2}} and \frac{\left(m-4\right)\left(m+4\right)}{\left(m-2\right)\left(m+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+4m+24-m^{2}-4m+4m+16}{\left(m-2\right)\left(m+4\right)^{2}}
Do the multiplications in m^{2}+4m+24-\left(m-4\right)\left(m+4\right).
\frac{4m+40}{\left(m-2\right)\left(m+4\right)^{2}}
Combine like terms in m^{2}+4m+24-m^{2}-4m+4m+16.
\frac{4m+40}{m^{3}+6m^{2}-32}
Expand \left(m-2\right)\left(m+4\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}