Solve for m
m=\frac{\sqrt{6}}{2}+1\approx 2.224744871
m=-\frac{\sqrt{6}}{2}+1\approx -0.224744871
Quiz
Quadratic Equation
5 problems similar to:
\frac { m + 2 } { m - 3 } = \frac { - m + 1 } { m - 2 }
Share
Copied to clipboard
\left(m-2\right)\left(m+2\right)=\left(m-3\right)\left(-m+1\right)
Variable m cannot be equal to any of the values 2,3 since division by zero is not defined. Multiply both sides of the equation by \left(m-3\right)\left(m-2\right), the least common multiple of m-3,m-2.
m^{2}-4=\left(m-3\right)\left(-m+1\right)
Consider \left(m-2\right)\left(m+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
m^{2}-4=m\left(-m\right)+m-3\left(-m\right)-3
Use the distributive property to multiply m-3 by -m+1.
m^{2}-4=m\left(-m\right)+m+3m-3
Multiply -3 and -1 to get 3.
m^{2}-4=m\left(-m\right)+4m-3
Combine m and 3m to get 4m.
m^{2}-4-m\left(-m\right)=4m-3
Subtract m\left(-m\right) from both sides.
m^{2}-4-m\left(-m\right)-4m=-3
Subtract 4m from both sides.
m^{2}-4-m\left(-m\right)-4m+3=0
Add 3 to both sides.
m^{2}-4-m^{2}\left(-1\right)-4m+3=0
Multiply m and m to get m^{2}.
m^{2}-4+m^{2}-4m+3=0
Multiply -1 and -1 to get 1.
2m^{2}-4-4m+3=0
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-1-4m=0
Add -4 and 3 to get -1.
2m^{2}-4m-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-1\right)}}{2\times 2}
Square -4.
m=\frac{-\left(-4\right)±\sqrt{16-8\left(-1\right)}}{2\times 2}
Multiply -4 times 2.
m=\frac{-\left(-4\right)±\sqrt{16+8}}{2\times 2}
Multiply -8 times -1.
m=\frac{-\left(-4\right)±\sqrt{24}}{2\times 2}
Add 16 to 8.
m=\frac{-\left(-4\right)±2\sqrt{6}}{2\times 2}
Take the square root of 24.
m=\frac{4±2\sqrt{6}}{2\times 2}
The opposite of -4 is 4.
m=\frac{4±2\sqrt{6}}{4}
Multiply 2 times 2.
m=\frac{2\sqrt{6}+4}{4}
Now solve the equation m=\frac{4±2\sqrt{6}}{4} when ± is plus. Add 4 to 2\sqrt{6}.
m=\frac{\sqrt{6}}{2}+1
Divide 4+2\sqrt{6} by 4.
m=\frac{4-2\sqrt{6}}{4}
Now solve the equation m=\frac{4±2\sqrt{6}}{4} when ± is minus. Subtract 2\sqrt{6} from 4.
m=-\frac{\sqrt{6}}{2}+1
Divide 4-2\sqrt{6} by 4.
m=\frac{\sqrt{6}}{2}+1 m=-\frac{\sqrt{6}}{2}+1
The equation is now solved.
\left(m-2\right)\left(m+2\right)=\left(m-3\right)\left(-m+1\right)
Variable m cannot be equal to any of the values 2,3 since division by zero is not defined. Multiply both sides of the equation by \left(m-3\right)\left(m-2\right), the least common multiple of m-3,m-2.
m^{2}-4=\left(m-3\right)\left(-m+1\right)
Consider \left(m-2\right)\left(m+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
m^{2}-4=m\left(-m\right)+m-3\left(-m\right)-3
Use the distributive property to multiply m-3 by -m+1.
m^{2}-4=m\left(-m\right)+m+3m-3
Multiply -3 and -1 to get 3.
m^{2}-4=m\left(-m\right)+4m-3
Combine m and 3m to get 4m.
m^{2}-4-m\left(-m\right)=4m-3
Subtract m\left(-m\right) from both sides.
m^{2}-4-m\left(-m\right)-4m=-3
Subtract 4m from both sides.
m^{2}-4-m^{2}\left(-1\right)-4m=-3
Multiply m and m to get m^{2}.
m^{2}-4+m^{2}-4m=-3
Multiply -1 and -1 to get 1.
2m^{2}-4-4m=-3
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-4m=-3+4
Add 4 to both sides.
2m^{2}-4m=1
Add -3 and 4 to get 1.
\frac{2m^{2}-4m}{2}=\frac{1}{2}
Divide both sides by 2.
m^{2}+\left(-\frac{4}{2}\right)m=\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}-2m=\frac{1}{2}
Divide -4 by 2.
m^{2}-2m+1=\frac{1}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-2m+1=\frac{3}{2}
Add \frac{1}{2} to 1.
\left(m-1\right)^{2}=\frac{3}{2}
Factor m^{2}-2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-1\right)^{2}}=\sqrt{\frac{3}{2}}
Take the square root of both sides of the equation.
m-1=\frac{\sqrt{6}}{2} m-1=-\frac{\sqrt{6}}{2}
Simplify.
m=\frac{\sqrt{6}}{2}+1 m=-\frac{\sqrt{6}}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}