Solve for k_1
k_{1}=\frac{4k_{2}}{5}
k_{2}\neq 0
Solve for k_2
k_{2}=\frac{5k_{1}}{4}
k_{1}\neq 0
Share
Copied to clipboard
100k_{2}=k_{1}\times 80\times 1.25^{2}
Variable k_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 100k_{1}, the least common multiple of k_{1},100.
100k_{2}=k_{1}\times 80\times 1.5625
Calculate 1.25 to the power of 2 and get 1.5625.
100k_{2}=k_{1}\times 125
Multiply 80 and 1.5625 to get 125.
k_{1}\times 125=100k_{2}
Swap sides so that all variable terms are on the left hand side.
125k_{1}=100k_{2}
The equation is in standard form.
\frac{125k_{1}}{125}=\frac{100k_{2}}{125}
Divide both sides by 125.
k_{1}=\frac{100k_{2}}{125}
Dividing by 125 undoes the multiplication by 125.
k_{1}=\frac{4k_{2}}{5}
Divide 100k_{2} by 125.
k_{1}=\frac{4k_{2}}{5}\text{, }k_{1}\neq 0
Variable k_{1} cannot be equal to 0.
100k_{2}=k_{1}\times 80\times 1.25^{2}
Multiply both sides of the equation by 100k_{1}, the least common multiple of k_{1},100.
100k_{2}=k_{1}\times 80\times 1.5625
Calculate 1.25 to the power of 2 and get 1.5625.
100k_{2}=k_{1}\times 125
Multiply 80 and 1.5625 to get 125.
100k_{2}=125k_{1}
The equation is in standard form.
\frac{100k_{2}}{100}=\frac{125k_{1}}{100}
Divide both sides by 100.
k_{2}=\frac{125k_{1}}{100}
Dividing by 100 undoes the multiplication by 100.
k_{2}=\frac{5k_{1}}{4}
Divide 125k_{1} by 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}