Solve for k
k = \frac{374}{3} = 124\frac{2}{3} \approx 124.666666667
Share
Copied to clipboard
\frac{k-273}{100}=\frac{225-492}{672-492}
Subtract 273 from 373 to get 100.
\frac{k-273}{100}=\frac{-267}{672-492}
Subtract 492 from 225 to get -267.
\frac{k-273}{100}=\frac{-267}{180}
Subtract 492 from 672 to get 180.
\frac{k-273}{100}=-\frac{89}{60}
Reduce the fraction \frac{-267}{180} to lowest terms by extracting and canceling out 3.
\frac{1}{100}k-\frac{273}{100}=-\frac{89}{60}
Divide each term of k-273 by 100 to get \frac{1}{100}k-\frac{273}{100}.
\frac{1}{100}k=-\frac{89}{60}+\frac{273}{100}
Add \frac{273}{100} to both sides.
\frac{1}{100}k=-\frac{445}{300}+\frac{819}{300}
Least common multiple of 60 and 100 is 300. Convert -\frac{89}{60} and \frac{273}{100} to fractions with denominator 300.
\frac{1}{100}k=\frac{-445+819}{300}
Since -\frac{445}{300} and \frac{819}{300} have the same denominator, add them by adding their numerators.
\frac{1}{100}k=\frac{374}{300}
Add -445 and 819 to get 374.
\frac{1}{100}k=\frac{187}{150}
Reduce the fraction \frac{374}{300} to lowest terms by extracting and canceling out 2.
k=\frac{187}{150}\times 100
Multiply both sides by 100, the reciprocal of \frac{1}{100}.
k=\frac{187\times 100}{150}
Express \frac{187}{150}\times 100 as a single fraction.
k=\frac{18700}{150}
Multiply 187 and 100 to get 18700.
k=\frac{374}{3}
Reduce the fraction \frac{18700}{150} to lowest terms by extracting and canceling out 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}