Solve for c
c=-\frac{3}{1-k}
k\neq 1
Solve for k
k=\frac{c+3}{c}
c\neq 0
Share
Copied to clipboard
-2c\left(k-1\right)=-6
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4c, the least common multiple of -2,4c.
-2ck+2c=-6
Use the distributive property to multiply -2c by k-1.
\left(-2k+2\right)c=-6
Combine all terms containing c.
\left(2-2k\right)c=-6
The equation is in standard form.
\frac{\left(2-2k\right)c}{2-2k}=-\frac{6}{2-2k}
Divide both sides by -2k+2.
c=-\frac{6}{2-2k}
Dividing by -2k+2 undoes the multiplication by -2k+2.
c=-\frac{3}{1-k}
Divide -6 by -2k+2.
c=-\frac{3}{1-k}\text{, }c\neq 0
Variable c cannot be equal to 0.
-2c\left(k-1\right)=-6
Multiply both sides of the equation by 4c, the least common multiple of -2,4c.
-2ck+2c=-6
Use the distributive property to multiply -2c by k-1.
-2ck=-6-2c
Subtract 2c from both sides.
\left(-2c\right)k=-2c-6
The equation is in standard form.
\frac{\left(-2c\right)k}{-2c}=\frac{-2c-6}{-2c}
Divide both sides by -2c.
k=\frac{-2c-6}{-2c}
Dividing by -2c undoes the multiplication by -2c.
k=1+\frac{3}{c}
Divide -6-2c by -2c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}