Evaluate
\frac{\left(k+1\right)\left(3k+8\right)}{4\left(k+2\right)\left(k+3\right)}
Expand
\frac{3k^{2}+11k+8}{4\left(k+2\right)\left(k+3\right)}
Share
Copied to clipboard
\frac{k\left(3k+5\right)\left(k+3\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}+\frac{4\left(k+2\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(k+1\right)\left(k+2\right) and \left(k+1\right)\left(k+3\right) is 4\left(k+1\right)\left(k+2\right)\left(k+3\right). Multiply \frac{k\left(3k+5\right)}{4\left(k+1\right)\left(k+2\right)} times \frac{k+3}{k+3}. Multiply \frac{1}{\left(k+1\right)\left(k+3\right)} times \frac{4\left(k+2\right)}{4\left(k+2\right)}.
\frac{k\left(3k+5\right)\left(k+3\right)+4\left(k+2\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Since \frac{k\left(3k+5\right)\left(k+3\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)} and \frac{4\left(k+2\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)} have the same denominator, add them by adding their numerators.
\frac{3k^{3}+9k^{2}+5k^{2}+15k+4k+8}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Do the multiplications in k\left(3k+5\right)\left(k+3\right)+4\left(k+2\right).
\frac{3k^{3}+14k^{2}+19k+8}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Combine like terms in 3k^{3}+9k^{2}+5k^{2}+15k+4k+8.
\frac{\left(3k+8\right)\left(k+1\right)^{2}}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Factor the expressions that are not already factored in \frac{3k^{3}+14k^{2}+19k+8}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}.
\frac{\left(k+1\right)\left(3k+8\right)}{4\left(k+2\right)\left(k+3\right)}
Cancel out k+1 in both numerator and denominator.
\frac{\left(k+1\right)\left(3k+8\right)}{4k^{2}+20k+24}
Expand 4\left(k+2\right)\left(k+3\right).
\frac{3k^{2}+8k+3k+8}{4k^{2}+20k+24}
Apply the distributive property by multiplying each term of k+1 by each term of 3k+8.
\frac{3k^{2}+11k+8}{4k^{2}+20k+24}
Combine 8k and 3k to get 11k.
\frac{k\left(3k+5\right)\left(k+3\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}+\frac{4\left(k+2\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(k+1\right)\left(k+2\right) and \left(k+1\right)\left(k+3\right) is 4\left(k+1\right)\left(k+2\right)\left(k+3\right). Multiply \frac{k\left(3k+5\right)}{4\left(k+1\right)\left(k+2\right)} times \frac{k+3}{k+3}. Multiply \frac{1}{\left(k+1\right)\left(k+3\right)} times \frac{4\left(k+2\right)}{4\left(k+2\right)}.
\frac{k\left(3k+5\right)\left(k+3\right)+4\left(k+2\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Since \frac{k\left(3k+5\right)\left(k+3\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)} and \frac{4\left(k+2\right)}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)} have the same denominator, add them by adding their numerators.
\frac{3k^{3}+9k^{2}+5k^{2}+15k+4k+8}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Do the multiplications in k\left(3k+5\right)\left(k+3\right)+4\left(k+2\right).
\frac{3k^{3}+14k^{2}+19k+8}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Combine like terms in 3k^{3}+9k^{2}+5k^{2}+15k+4k+8.
\frac{\left(3k+8\right)\left(k+1\right)^{2}}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}
Factor the expressions that are not already factored in \frac{3k^{3}+14k^{2}+19k+8}{4\left(k+1\right)\left(k+2\right)\left(k+3\right)}.
\frac{\left(k+1\right)\left(3k+8\right)}{4\left(k+2\right)\left(k+3\right)}
Cancel out k+1 in both numerator and denominator.
\frac{\left(k+1\right)\left(3k+8\right)}{4k^{2}+20k+24}
Expand 4\left(k+2\right)\left(k+3\right).
\frac{3k^{2}+8k+3k+8}{4k^{2}+20k+24}
Apply the distributive property by multiplying each term of k+1 by each term of 3k+8.
\frac{3k^{2}+11k+8}{4k^{2}+20k+24}
Combine 8k and 3k to get 11k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}