Solve for k
k=10-3x
x\neq 3
Solve for x
x=\frac{10-k}{3}
k\neq 1
Graph
Share
Copied to clipboard
k+\left(x-3\right)\times 2=4-x
Multiply both sides of the equation by x-3.
k+2x-6=4-x
Use the distributive property to multiply x-3 by 2.
k-6=4-x-2x
Subtract 2x from both sides.
k-6=4-3x
Combine -x and -2x to get -3x.
k=4-3x+6
Add 6 to both sides.
k=10-3x
Add 4 and 6 to get 10.
k+\left(x-3\right)\times 2=4-x
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
k+2x-6=4-x
Use the distributive property to multiply x-3 by 2.
k+2x-6+x=4
Add x to both sides.
k+3x-6=4
Combine 2x and x to get 3x.
3x-6=4-k
Subtract k from both sides.
3x=4-k+6
Add 6 to both sides.
3x=10-k
Add 4 and 6 to get 10.
\frac{3x}{3}=\frac{10-k}{3}
Divide both sides by 3.
x=\frac{10-k}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{10-k}{3}\text{, }x\neq 3
Variable x cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}