Solve for k
k=5-2x
x\neq 2
Solve for x
x=\frac{5-k}{2}
k\neq 1
Graph
Share
Copied to clipboard
k+\left(x-2\right)\times 3=-\left(1-x\right)
Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
k+3x-6=-\left(1-x\right)
Use the distributive property to multiply x-2 by 3.
k+3x-6=-1+x
To find the opposite of 1-x, find the opposite of each term.
k-6=-1+x-3x
Subtract 3x from both sides.
k-6=-1-2x
Combine x and -3x to get -2x.
k=-1-2x+6
Add 6 to both sides.
k=5-2x
Add -1 and 6 to get 5.
k+\left(x-2\right)\times 3=-\left(1-x\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
k+3x-6=-\left(1-x\right)
Use the distributive property to multiply x-2 by 3.
k+3x-6=-1+x
To find the opposite of 1-x, find the opposite of each term.
k+3x-6-x=-1
Subtract x from both sides.
k+2x-6=-1
Combine 3x and -x to get 2x.
2x-6=-1-k
Subtract k from both sides.
2x=-1-k+6
Add 6 to both sides.
2x=5-k
Add -1 and 6 to get 5.
\frac{2x}{2}=\frac{5-k}{2}
Divide both sides by 2.
x=\frac{5-k}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{5-k}{2}\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}