Solve for k
k = \frac{441}{145} = 3\frac{6}{145} \approx 3.04137931
Share
Copied to clipboard
\frac{k}{4.9}=\frac{36}{58}
Expand \frac{3.6}{5.8} by multiplying both numerator and the denominator by 10.
\frac{k}{4.9}=\frac{18}{29}
Reduce the fraction \frac{36}{58} to lowest terms by extracting and canceling out 2.
k=\frac{18}{29}\times 4.9
Multiply both sides by 4.9.
k=\frac{18}{29}\times \frac{49}{10}
Convert decimal number 4.9 to fraction \frac{49}{10}.
k=\frac{18\times 49}{29\times 10}
Multiply \frac{18}{29} times \frac{49}{10} by multiplying numerator times numerator and denominator times denominator.
k=\frac{882}{290}
Do the multiplications in the fraction \frac{18\times 49}{29\times 10}.
k=\frac{441}{145}
Reduce the fraction \frac{882}{290} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}