Solve for k
k=4\left(x-1\right)
x\neq 2
Solve for x
x=\frac{k+4}{4}
k\neq 4
Graph
Share
Copied to clipboard
k+2\left(x-2\right)\left(-1\right)=2x
Multiply both sides of the equation by 2\left(x-2\right), the least common multiple of 2x-4,x-2.
k-2\left(x-2\right)=2x
Multiply 2 and -1 to get -2.
k-2x+4=2x
Use the distributive property to multiply -2 by x-2.
k+4=2x+2x
Add 2x to both sides.
k+4=4x
Combine 2x and 2x to get 4x.
k=4x-4
Subtract 4 from both sides.
k+2\left(x-2\right)\left(-1\right)=2x
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-2\right), the least common multiple of 2x-4,x-2.
k-2\left(x-2\right)=2x
Multiply 2 and -1 to get -2.
k-2x+4=2x
Use the distributive property to multiply -2 by x-2.
k-2x+4-2x=0
Subtract 2x from both sides.
k-4x+4=0
Combine -2x and -2x to get -4x.
-4x+4=-k
Subtract k from both sides. Anything subtracted from zero gives its negation.
-4x=-k-4
Subtract 4 from both sides.
\frac{-4x}{-4}=\frac{-k-4}{-4}
Divide both sides by -4.
x=\frac{-k-4}{-4}
Dividing by -4 undoes the multiplication by -4.
x=\frac{k}{4}+1
Divide -k-4 by -4.
x=\frac{k}{4}+1\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}