Evaluate
\frac{k+1}{2k+3}
Expand
\frac{k+1}{2k+3}
Quiz
Polynomial
5 problems similar to:
\frac { k } { 2 k + 1 } + \frac { 1 } { ( 2 k + 1 ) ( 2 k + 3 ) }
Share
Copied to clipboard
\frac{k\left(2k+3\right)}{\left(2k+1\right)\left(2k+3\right)}+\frac{1}{\left(2k+1\right)\left(2k+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2k+1 and \left(2k+1\right)\left(2k+3\right) is \left(2k+1\right)\left(2k+3\right). Multiply \frac{k}{2k+1} times \frac{2k+3}{2k+3}.
\frac{k\left(2k+3\right)+1}{\left(2k+1\right)\left(2k+3\right)}
Since \frac{k\left(2k+3\right)}{\left(2k+1\right)\left(2k+3\right)} and \frac{1}{\left(2k+1\right)\left(2k+3\right)} have the same denominator, add them by adding their numerators.
\frac{2k^{2}+3k+1}{\left(2k+1\right)\left(2k+3\right)}
Do the multiplications in k\left(2k+3\right)+1.
\frac{\left(k+1\right)\left(2k+1\right)}{\left(2k+1\right)\left(2k+3\right)}
Factor the expressions that are not already factored in \frac{2k^{2}+3k+1}{\left(2k+1\right)\left(2k+3\right)}.
\frac{k+1}{2k+3}
Cancel out 2k+1 in both numerator and denominator.
\frac{k\left(2k+3\right)}{\left(2k+1\right)\left(2k+3\right)}+\frac{1}{\left(2k+1\right)\left(2k+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2k+1 and \left(2k+1\right)\left(2k+3\right) is \left(2k+1\right)\left(2k+3\right). Multiply \frac{k}{2k+1} times \frac{2k+3}{2k+3}.
\frac{k\left(2k+3\right)+1}{\left(2k+1\right)\left(2k+3\right)}
Since \frac{k\left(2k+3\right)}{\left(2k+1\right)\left(2k+3\right)} and \frac{1}{\left(2k+1\right)\left(2k+3\right)} have the same denominator, add them by adding their numerators.
\frac{2k^{2}+3k+1}{\left(2k+1\right)\left(2k+3\right)}
Do the multiplications in k\left(2k+3\right)+1.
\frac{\left(k+1\right)\left(2k+1\right)}{\left(2k+1\right)\left(2k+3\right)}
Factor the expressions that are not already factored in \frac{2k^{2}+3k+1}{\left(2k+1\right)\left(2k+3\right)}.
\frac{k+1}{2k+3}
Cancel out 2k+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}