Evaluate
\frac{\left(k-9\right)\left(7k-3\right)}{3\left(k-1\right)}
Expand
\frac{7k^{2}-66k+27}{3\left(k-1\right)}
Share
Copied to clipboard
\frac{\left(k-9\right)\left(k+3\right)}{k+3}+\frac{8k^{2}-72k}{6k-6}
Factor the expressions that are not already factored in \frac{k^{2}-6k-27}{k+3}.
k-9+\frac{8k^{2}-72k}{6k-6}
Cancel out k+3 in both numerator and denominator.
k-9+\frac{8k\left(k-9\right)}{6\left(k-1\right)}
Factor the expressions that are not already factored in \frac{8k^{2}-72k}{6k-6}.
k-9+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)}+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply k-9 times \frac{3\left(k-1\right)}{3\left(k-1\right)}.
\frac{\left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right)}{3\left(k-1\right)}
Since \frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)} and \frac{4k\left(k-9\right)}{3\left(k-1\right)} have the same denominator, add them by adding their numerators.
\frac{3k^{2}-3k-27k+27+4k^{2}-36k}{3\left(k-1\right)}
Do the multiplications in \left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right).
\frac{7k^{2}-66k+27}{3\left(k-1\right)}
Combine like terms in 3k^{2}-3k-27k+27+4k^{2}-36k.
\frac{7k^{2}-66k+27}{3k-3}
Expand 3\left(k-1\right).
\frac{\left(k-9\right)\left(k+3\right)}{k+3}+\frac{8k^{2}-72k}{6k-6}
Factor the expressions that are not already factored in \frac{k^{2}-6k-27}{k+3}.
k-9+\frac{8k^{2}-72k}{6k-6}
Cancel out k+3 in both numerator and denominator.
k-9+\frac{8k\left(k-9\right)}{6\left(k-1\right)}
Factor the expressions that are not already factored in \frac{8k^{2}-72k}{6k-6}.
k-9+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)}+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply k-9 times \frac{3\left(k-1\right)}{3\left(k-1\right)}.
\frac{\left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right)}{3\left(k-1\right)}
Since \frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)} and \frac{4k\left(k-9\right)}{3\left(k-1\right)} have the same denominator, add them by adding their numerators.
\frac{3k^{2}-3k-27k+27+4k^{2}-36k}{3\left(k-1\right)}
Do the multiplications in \left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right).
\frac{7k^{2}-66k+27}{3\left(k-1\right)}
Combine like terms in 3k^{2}-3k-27k+27+4k^{2}-36k.
\frac{7k^{2}-66k+27}{3k-3}
Expand 3\left(k-1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}