Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(k-9\right)\left(k+3\right)}{k+3}+\frac{8k^{2}-72k}{6k-6}
Factor the expressions that are not already factored in \frac{k^{2}-6k-27}{k+3}.
k-9+\frac{8k^{2}-72k}{6k-6}
Cancel out k+3 in both numerator and denominator.
k-9+\frac{8k\left(k-9\right)}{6\left(k-1\right)}
Factor the expressions that are not already factored in \frac{8k^{2}-72k}{6k-6}.
k-9+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)}+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply k-9 times \frac{3\left(k-1\right)}{3\left(k-1\right)}.
\frac{\left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right)}{3\left(k-1\right)}
Since \frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)} and \frac{4k\left(k-9\right)}{3\left(k-1\right)} have the same denominator, add them by adding their numerators.
\frac{3k^{2}-3k-27k+27+4k^{2}-36k}{3\left(k-1\right)}
Do the multiplications in \left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right).
\frac{7k^{2}-66k+27}{3\left(k-1\right)}
Combine like terms in 3k^{2}-3k-27k+27+4k^{2}-36k.
\frac{7k^{2}-66k+27}{3k-3}
Expand 3\left(k-1\right).
\frac{\left(k-9\right)\left(k+3\right)}{k+3}+\frac{8k^{2}-72k}{6k-6}
Factor the expressions that are not already factored in \frac{k^{2}-6k-27}{k+3}.
k-9+\frac{8k^{2}-72k}{6k-6}
Cancel out k+3 in both numerator and denominator.
k-9+\frac{8k\left(k-9\right)}{6\left(k-1\right)}
Factor the expressions that are not already factored in \frac{8k^{2}-72k}{6k-6}.
k-9+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)}+\frac{4k\left(k-9\right)}{3\left(k-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply k-9 times \frac{3\left(k-1\right)}{3\left(k-1\right)}.
\frac{\left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right)}{3\left(k-1\right)}
Since \frac{\left(k-9\right)\times 3\left(k-1\right)}{3\left(k-1\right)} and \frac{4k\left(k-9\right)}{3\left(k-1\right)} have the same denominator, add them by adding their numerators.
\frac{3k^{2}-3k-27k+27+4k^{2}-36k}{3\left(k-1\right)}
Do the multiplications in \left(k-9\right)\times 3\left(k-1\right)+4k\left(k-9\right).
\frac{7k^{2}-66k+27}{3\left(k-1\right)}
Combine like terms in 3k^{2}-3k-27k+27+4k^{2}-36k.
\frac{7k^{2}-66k+27}{3k-3}
Expand 3\left(k-1\right).