Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(k^{2}-4\right)\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}-\frac{\left(1-4k^{2}\right)\left(k^{2}+4\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k^{2}+4 and 4k^{2}+1 is \left(4k^{2}+1\right)\left(k^{2}+4\right). Multiply \frac{k^{2}-4}{k^{2}+4} times \frac{4k^{2}+1}{4k^{2}+1}. Multiply \frac{1-4k^{2}}{4k^{2}+1} times \frac{k^{2}+4}{k^{2}+4}.
\frac{\left(k^{2}-4\right)\left(4k^{2}+1\right)-\left(1-4k^{2}\right)\left(k^{2}+4\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
Since \frac{\left(k^{2}-4\right)\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)} and \frac{\left(1-4k^{2}\right)\left(k^{2}+4\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4k^{4}+k^{2}-16k^{2}-4-k^{2}-4+4k^{4}+16k^{2}}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
Do the multiplications in \left(k^{2}-4\right)\left(4k^{2}+1\right)-\left(1-4k^{2}\right)\left(k^{2}+4\right).
\frac{8k^{4}-8}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
Combine like terms in 4k^{4}+k^{2}-16k^{2}-4-k^{2}-4+4k^{4}+16k^{2}.
\frac{8k^{4}-8}{4k^{4}+17k^{2}+4}
Expand \left(4k^{2}+1\right)\left(k^{2}+4\right).
\frac{\left(k^{2}-4\right)\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}-\frac{\left(1-4k^{2}\right)\left(k^{2}+4\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k^{2}+4 and 4k^{2}+1 is \left(4k^{2}+1\right)\left(k^{2}+4\right). Multiply \frac{k^{2}-4}{k^{2}+4} times \frac{4k^{2}+1}{4k^{2}+1}. Multiply \frac{1-4k^{2}}{4k^{2}+1} times \frac{k^{2}+4}{k^{2}+4}.
\frac{\left(k^{2}-4\right)\left(4k^{2}+1\right)-\left(1-4k^{2}\right)\left(k^{2}+4\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
Since \frac{\left(k^{2}-4\right)\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)} and \frac{\left(1-4k^{2}\right)\left(k^{2}+4\right)}{\left(4k^{2}+1\right)\left(k^{2}+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4k^{4}+k^{2}-16k^{2}-4-k^{2}-4+4k^{4}+16k^{2}}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
Do the multiplications in \left(k^{2}-4\right)\left(4k^{2}+1\right)-\left(1-4k^{2}\right)\left(k^{2}+4\right).
\frac{8k^{4}-8}{\left(4k^{2}+1\right)\left(k^{2}+4\right)}
Combine like terms in 4k^{4}+k^{2}-16k^{2}-4-k^{2}-4+4k^{4}+16k^{2}.
\frac{8k^{4}-8}{4k^{4}+17k^{2}+4}
Expand \left(4k^{2}+1\right)\left(k^{2}+4\right).