Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(k^{2}-3kh\right)\left(k+h\right)^{2}}{\left(k^{2}-h^{2}\right)\left(4k-12h\right)}
Multiply \frac{k^{2}-3kh}{k^{2}-h^{2}} times \frac{\left(k+h\right)^{2}}{4k-12h} by multiplying numerator times numerator and denominator times denominator.
\frac{k\left(-3h+k\right)\left(h+k\right)^{2}}{4\left(h+k\right)\left(-3h+k\right)\left(-h+k\right)}
Factor the expressions that are not already factored.
\frac{k\left(h+k\right)}{4\left(-h+k\right)}
Cancel out \left(h+k\right)\left(-3h+k\right) in both numerator and denominator.
\frac{hk+k^{2}}{-4h+4k}
Expand the expression.
\frac{\left(k^{2}-3kh\right)\left(k+h\right)^{2}}{\left(k^{2}-h^{2}\right)\left(4k-12h\right)}
Multiply \frac{k^{2}-3kh}{k^{2}-h^{2}} times \frac{\left(k+h\right)^{2}}{4k-12h} by multiplying numerator times numerator and denominator times denominator.
\frac{k\left(-3h+k\right)\left(h+k\right)^{2}}{4\left(h+k\right)\left(-3h+k\right)\left(-h+k\right)}
Factor the expressions that are not already factored.
\frac{k\left(h+k\right)}{4\left(-h+k\right)}
Cancel out \left(h+k\right)\left(-3h+k\right) in both numerator and denominator.
\frac{hk+k^{2}}{-4h+4k}
Expand the expression.