Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{k^{2}}{2\left(k-5\right)}+\frac{25}{2\left(-k+5\right)}
Factor 2k-10. Factor 10-2k.
\frac{k^{2}}{2\left(k-5\right)}+\frac{25\left(-1\right)}{2\left(k-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(k-5\right) and 2\left(-k+5\right) is 2\left(k-5\right). Multiply \frac{25}{2\left(-k+5\right)} times \frac{-1}{-1}.
\frac{k^{2}+25\left(-1\right)}{2\left(k-5\right)}
Since \frac{k^{2}}{2\left(k-5\right)} and \frac{25\left(-1\right)}{2\left(k-5\right)} have the same denominator, add them by adding their numerators.
\frac{k^{2}-25}{2\left(k-5\right)}
Do the multiplications in k^{2}+25\left(-1\right).
\frac{\left(k-5\right)\left(k+5\right)}{2\left(k-5\right)}
Factor the expressions that are not already factored in \frac{k^{2}-25}{2\left(k-5\right)}.
\frac{k+5}{2}
Cancel out k-5 in both numerator and denominator.