Solve for k
k=5
Quiz
Linear Equation
5 problems similar to:
\frac { k + 6 } { 9 k + 10 } = \frac { k + 5 } { 9 k + 5 }
Share
Copied to clipboard
\left(9k+5\right)\left(k+6\right)=\left(9k+10\right)\left(k+5\right)
Variable k cannot be equal to any of the values -\frac{10}{9},-\frac{5}{9} since division by zero is not defined. Multiply both sides of the equation by \left(9k+5\right)\left(9k+10\right), the least common multiple of 9k+10,9k+5.
9k^{2}+59k+30=\left(9k+10\right)\left(k+5\right)
Use the distributive property to multiply 9k+5 by k+6 and combine like terms.
9k^{2}+59k+30=9k^{2}+55k+50
Use the distributive property to multiply 9k+10 by k+5 and combine like terms.
9k^{2}+59k+30-9k^{2}=55k+50
Subtract 9k^{2} from both sides.
59k+30=55k+50
Combine 9k^{2} and -9k^{2} to get 0.
59k+30-55k=50
Subtract 55k from both sides.
4k+30=50
Combine 59k and -55k to get 4k.
4k=50-30
Subtract 30 from both sides.
4k=20
Subtract 30 from 50 to get 20.
k=\frac{20}{4}
Divide both sides by 4.
k=5
Divide 20 by 4 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}