Solve for j
j=-1
Share
Copied to clipboard
\left(j+3\right)\left(j-8\right)=\left(j+10\right)\left(j-1\right)
Variable j cannot be equal to any of the values -10,-3 since division by zero is not defined. Multiply both sides of the equation by \left(j+3\right)\left(j+10\right), the least common multiple of j+10,j+3.
j^{2}-5j-24=\left(j+10\right)\left(j-1\right)
Use the distributive property to multiply j+3 by j-8 and combine like terms.
j^{2}-5j-24=j^{2}+9j-10
Use the distributive property to multiply j+10 by j-1 and combine like terms.
j^{2}-5j-24-j^{2}=9j-10
Subtract j^{2} from both sides.
-5j-24=9j-10
Combine j^{2} and -j^{2} to get 0.
-5j-24-9j=-10
Subtract 9j from both sides.
-14j-24=-10
Combine -5j and -9j to get -14j.
-14j=-10+24
Add 24 to both sides.
-14j=14
Add -10 and 24 to get 14.
j=\frac{14}{-14}
Divide both sides by -14.
j=-1
Divide 14 by -14 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}