Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i\left(3+4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(3+4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3i+4i^{2}}{25}
Multiply i times 3+4i.
\frac{3i+4\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{-4+3i}{25}
Do the multiplications in 3i+4\left(-1\right). Reorder the terms.
-\frac{4}{25}+\frac{3}{25}i
Divide -4+3i by 25 to get -\frac{4}{25}+\frac{3}{25}i.
Re(\frac{i\left(3+4i\right)}{3^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(3+4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3i+4i^{2}}{25})
Multiply i times 3+4i.
Re(\frac{3i+4\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{-4+3i}{25})
Do the multiplications in 3i+4\left(-1\right). Reorder the terms.
Re(-\frac{4}{25}+\frac{3}{25}i)
Divide -4+3i by 25 to get -\frac{4}{25}+\frac{3}{25}i.
-\frac{4}{25}
The real part of -\frac{4}{25}+\frac{3}{25}i is -\frac{4}{25}.