Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i\left(-16+16i\right)}{\left(2-4i\right)^{2}}
Calculate 2+2i to the power of 3 and get -16+16i.
\frac{-16-16i}{\left(2-4i\right)^{2}}
Multiply i and -16+16i to get -16-16i.
\frac{-16-16i}{-12-16i}
Calculate 2-4i to the power of 2 and get -12-16i.
\frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -12+16i.
\frac{448-64i}{400}
Do the multiplications in \frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}.
\frac{28}{25}-\frac{4}{25}i
Divide 448-64i by 400 to get \frac{28}{25}-\frac{4}{25}i.
Re(\frac{i\left(-16+16i\right)}{\left(2-4i\right)^{2}})
Calculate 2+2i to the power of 3 and get -16+16i.
Re(\frac{-16-16i}{\left(2-4i\right)^{2}})
Multiply i and -16+16i to get -16-16i.
Re(\frac{-16-16i}{-12-16i})
Calculate 2-4i to the power of 2 and get -12-16i.
Re(\frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)})
Multiply both numerator and denominator of \frac{-16-16i}{-12-16i} by the complex conjugate of the denominator, -12+16i.
Re(\frac{448-64i}{400})
Do the multiplications in \frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}.
Re(\frac{28}{25}-\frac{4}{25}i)
Divide 448-64i by 400 to get \frac{28}{25}-\frac{4}{25}i.
\frac{28}{25}
The real part of \frac{28}{25}-\frac{4}{25}i is \frac{28}{25}.