Evaluate
\frac{28}{25}-\frac{4}{25}i=1.12-0.16i
Real Part
\frac{28}{25} = 1\frac{3}{25} = 1.12
Share
Copied to clipboard
\frac{i\left(-16+16i\right)}{\left(2-4i\right)^{2}}
Calculate 2+2i to the power of 3 and get -16+16i.
\frac{-16-16i}{\left(2-4i\right)^{2}}
Multiply i and -16+16i to get -16-16i.
\frac{-16-16i}{-12-16i}
Calculate 2-4i to the power of 2 and get -12-16i.
\frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -12+16i.
\frac{448-64i}{400}
Do the multiplications in \frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}.
\frac{28}{25}-\frac{4}{25}i
Divide 448-64i by 400 to get \frac{28}{25}-\frac{4}{25}i.
Re(\frac{i\left(-16+16i\right)}{\left(2-4i\right)^{2}})
Calculate 2+2i to the power of 3 and get -16+16i.
Re(\frac{-16-16i}{\left(2-4i\right)^{2}})
Multiply i and -16+16i to get -16-16i.
Re(\frac{-16-16i}{-12-16i})
Calculate 2-4i to the power of 2 and get -12-16i.
Re(\frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)})
Multiply both numerator and denominator of \frac{-16-16i}{-12-16i} by the complex conjugate of the denominator, -12+16i.
Re(\frac{448-64i}{400})
Do the multiplications in \frac{\left(-16-16i\right)\left(-12+16i\right)}{\left(-12-16i\right)\left(-12+16i\right)}.
Re(\frac{28}{25}-\frac{4}{25}i)
Divide 448-64i by 400 to get \frac{28}{25}-\frac{4}{25}i.
\frac{28}{25}
The real part of \frac{28}{25}-\frac{4}{25}i is \frac{28}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}