Solve for q
q\neq 1
x=\sqrt{2}\left(-\frac{9}{2}+\frac{9}{2}i\right)\text{ or }x=\sqrt{2}\left(\frac{9}{2}-\frac{9}{2}i\right)
Solve for x
x=\sqrt{2}\left(-\frac{9}{2}+\frac{9}{2}i\right)
x=\sqrt{2}\left(\frac{9}{2}-\frac{9}{2}i\right)\text{, }q\neq 1
Share
Copied to clipboard
-27i\left(1-q\right)\times \frac{1}{27}x^{2}=81\left(q-1\right)
Variable q cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 27\left(q-1\right), the least common multiple of 1-q,27.
-i\left(1-q\right)x^{2}=81\left(q-1\right)
Multiply -27i and \frac{1}{27} to get -i.
\left(-i+iq\right)x^{2}=81\left(q-1\right)
Use the distributive property to multiply -i by 1-q.
-ix^{2}+iqx^{2}=81\left(q-1\right)
Use the distributive property to multiply -i+iq by x^{2}.
-ix^{2}+iqx^{2}=81q-81
Use the distributive property to multiply 81 by q-1.
-ix^{2}+iqx^{2}-81q=-81
Subtract 81q from both sides.
iqx^{2}-81q=-81-\left(-ix^{2}\right)
Subtract -ix^{2} from both sides.
iqx^{2}-81q=-81+ix^{2}
Multiply -1 and -i to get i.
\left(ix^{2}-81\right)q=-81+ix^{2}
Combine all terms containing q.
\left(ix^{2}-81\right)q=ix^{2}-81
The equation is in standard form.
\frac{\left(ix^{2}-81\right)q}{ix^{2}-81}=\frac{ix^{2}-81}{ix^{2}-81}
Divide both sides by ix^{2}-81.
q=\frac{ix^{2}-81}{ix^{2}-81}
Dividing by ix^{2}-81 undoes the multiplication by ix^{2}-81.
q=1
Divide ix^{2}-81 by ix^{2}-81.
q\in \emptyset
Variable q cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}