Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i\left(-47-52i\right)}{\left(3-2i\right)^{2}}
Calculate 1+4i to the power of 3 and get -47-52i.
\frac{52-47i}{\left(3-2i\right)^{2}}
Multiply i and -47-52i to get 52-47i.
\frac{52-47i}{5-12i}
Calculate 3-2i to the power of 2 and get 5-12i.
\frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+12i.
\frac{824+389i}{169}
Do the multiplications in \frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}.
\frac{824}{169}+\frac{389}{169}i
Divide 824+389i by 169 to get \frac{824}{169}+\frac{389}{169}i.
Re(\frac{i\left(-47-52i\right)}{\left(3-2i\right)^{2}})
Calculate 1+4i to the power of 3 and get -47-52i.
Re(\frac{52-47i}{\left(3-2i\right)^{2}})
Multiply i and -47-52i to get 52-47i.
Re(\frac{52-47i}{5-12i})
Calculate 3-2i to the power of 2 and get 5-12i.
Re(\frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)})
Multiply both numerator and denominator of \frac{52-47i}{5-12i} by the complex conjugate of the denominator, 5+12i.
Re(\frac{824+389i}{169})
Do the multiplications in \frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}.
Re(\frac{824}{169}+\frac{389}{169}i)
Divide 824+389i by 169 to get \frac{824}{169}+\frac{389}{169}i.
\frac{824}{169}
The real part of \frac{824}{169}+\frac{389}{169}i is \frac{824}{169}.