Evaluate
\frac{824}{169}+\frac{389}{169}i\approx 4.875739645+2.301775148i
Real Part
\frac{824}{169} = 4\frac{148}{169} = 4.875739644970414
Share
Copied to clipboard
\frac{i\left(-47-52i\right)}{\left(3-2i\right)^{2}}
Calculate 1+4i to the power of 3 and get -47-52i.
\frac{52-47i}{\left(3-2i\right)^{2}}
Multiply i and -47-52i to get 52-47i.
\frac{52-47i}{5-12i}
Calculate 3-2i to the power of 2 and get 5-12i.
\frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+12i.
\frac{824+389i}{169}
Do the multiplications in \frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}.
\frac{824}{169}+\frac{389}{169}i
Divide 824+389i by 169 to get \frac{824}{169}+\frac{389}{169}i.
Re(\frac{i\left(-47-52i\right)}{\left(3-2i\right)^{2}})
Calculate 1+4i to the power of 3 and get -47-52i.
Re(\frac{52-47i}{\left(3-2i\right)^{2}})
Multiply i and -47-52i to get 52-47i.
Re(\frac{52-47i}{5-12i})
Calculate 3-2i to the power of 2 and get 5-12i.
Re(\frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)})
Multiply both numerator and denominator of \frac{52-47i}{5-12i} by the complex conjugate of the denominator, 5+12i.
Re(\frac{824+389i}{169})
Do the multiplications in \frac{\left(52-47i\right)\left(5+12i\right)}{\left(5-12i\right)\left(5+12i\right)}.
Re(\frac{824}{169}+\frac{389}{169}i)
Divide 824+389i by 169 to get \frac{824}{169}+\frac{389}{169}i.
\frac{824}{169}
The real part of \frac{824}{169}+\frac{389}{169}i is \frac{824}{169}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}