Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+2i.
\frac{i\left(4+2i\right)}{4^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(4+2i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4i+2i^{2}}{20}
Multiply i times 4+2i.
\frac{4i+2\left(-1\right)}{20}
By definition, i^{2} is -1.
\frac{-2+4i}{20}
Do the multiplications in 4i+2\left(-1\right). Reorder the terms.
-\frac{1}{10}+\frac{1}{5}i
Divide -2+4i by 20 to get -\frac{1}{10}+\frac{1}{5}i.
Re(\frac{i\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)})
Multiply both numerator and denominator of \frac{i}{4-2i} by the complex conjugate of the denominator, 4+2i.
Re(\frac{i\left(4+2i\right)}{4^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(4+2i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4i+2i^{2}}{20})
Multiply i times 4+2i.
Re(\frac{4i+2\left(-1\right)}{20})
By definition, i^{2} is -1.
Re(\frac{-2+4i}{20})
Do the multiplications in 4i+2\left(-1\right). Reorder the terms.
Re(-\frac{1}{10}+\frac{1}{5}i)
Divide -2+4i by 20 to get -\frac{1}{10}+\frac{1}{5}i.
-\frac{1}{10}
The real part of -\frac{1}{10}+\frac{1}{5}i is -\frac{1}{10}.