Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{i\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2i-i^{2}}{5}
Multiply i times 2-i.
\frac{2i-\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{1+2i}{5}
Do the multiplications in 2i-\left(-1\right). Reorder the terms.
\frac{1}{5}+\frac{2}{5}i
Divide 1+2i by 5 to get \frac{1}{5}+\frac{2}{5}i.
Re(\frac{i\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{i\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2i-i^{2}}{5})
Multiply i times 2-i.
Re(\frac{2i-\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{1+2i}{5})
Do the multiplications in 2i-\left(-1\right). Reorder the terms.
Re(\frac{1}{5}+\frac{2}{5}i)
Divide 1+2i by 5 to get \frac{1}{5}+\frac{2}{5}i.
\frac{1}{5}
The real part of \frac{1}{5}+\frac{2}{5}i is \frac{1}{5}.