Evaluate
-\frac{1}{2}+\frac{1}{2}i=-0.5+0.5i
Real Part
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{i\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{i+i^{2}}{2}
Multiply i times 1+i.
\frac{i-1}{2}
By definition, i^{2} is -1.
\frac{-1+i}{2}
Reorder the terms.
-\frac{1}{2}+\frac{1}{2}i
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{i\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{i+i^{2}}{2})
Multiply i times 1+i.
Re(\frac{i-1}{2})
By definition, i^{2} is -1.
Re(\frac{-1+i}{2})
Reorder the terms.
Re(-\frac{1}{2}+\frac{1}{2}i)
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{1}{2}i is -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}