Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i\left(-2+8i\right)}{\left(-2-8i\right)\left(-2+8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -2+8i.
\frac{i\left(-2+8i\right)}{\left(-2\right)^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(-2+8i\right)}{68}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2i+8i^{2}}{68}
Multiply i times -2+8i.
\frac{-2i+8\left(-1\right)}{68}
By definition, i^{2} is -1.
\frac{-8-2i}{68}
Do the multiplications in -2i+8\left(-1\right). Reorder the terms.
-\frac{2}{17}-\frac{1}{34}i
Divide -8-2i by 68 to get -\frac{2}{17}-\frac{1}{34}i.
Re(\frac{i\left(-2+8i\right)}{\left(-2-8i\right)\left(-2+8i\right)})
Multiply both numerator and denominator of \frac{i}{-2-8i} by the complex conjugate of the denominator, -2+8i.
Re(\frac{i\left(-2+8i\right)}{\left(-2\right)^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(-2+8i\right)}{68})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2i+8i^{2}}{68})
Multiply i times -2+8i.
Re(\frac{-2i+8\left(-1\right)}{68})
By definition, i^{2} is -1.
Re(\frac{-8-2i}{68})
Do the multiplications in -2i+8\left(-1\right). Reorder the terms.
Re(-\frac{2}{17}-\frac{1}{34}i)
Divide -8-2i by 68 to get -\frac{2}{17}-\frac{1}{34}i.
-\frac{2}{17}
The real part of -\frac{2}{17}-\frac{1}{34}i is -\frac{2}{17}.