Evaluate
5
Real Part
5
Share
Copied to clipboard
\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1}
Calculate i to the power of 0 and get 1.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}}
Express \frac{\sqrt{5}}{5}\times 1 as a single fraction.
\frac{\sqrt{5}\times 5}{\sqrt{5}}
Divide \sqrt{5} by \frac{\sqrt{5}}{5} by multiplying \sqrt{5} by the reciprocal of \frac{\sqrt{5}}{5}.
\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}\times 5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}\times 5\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{5\times 5}{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{25}{5}
Multiply 5 and 5 to get 25.
5
Divide 25 by 5 to get 5.
Re(\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Re(\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}})
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
Re(\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}})
Calculate the square root of 1 and get 1.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}})
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}})
The square of \sqrt{5} is 5.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1})
Calculate i to the power of 0 and get 1.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}})
Express \frac{\sqrt{5}}{5}\times 1 as a single fraction.
Re(\frac{\sqrt{5}\times 5}{\sqrt{5}})
Divide \sqrt{5} by \frac{\sqrt{5}}{5} by multiplying \sqrt{5} by the reciprocal of \frac{\sqrt{5}}{5}.
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}})
Rationalize the denominator of \frac{\sqrt{5}\times 5}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{5})
The square of \sqrt{5} is 5.
Re(\frac{5\times 5}{5})
Multiply \sqrt{5} and \sqrt{5} to get 5.
Re(\frac{25}{5})
Multiply 5 and 5 to get 25.
Re(5)
Divide 25 by 5 to get 5.
5
The real part of 5 is 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}