Evaluate
-\frac{4\sqrt{2}}{3}+\frac{7}{3}i\approx -1.885618083+2.333333333i
Real Part
-\frac{4 \sqrt{2}}{3} = -1.885618083164127
Share
Copied to clipboard
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
Rationalize the denominator of \frac{i\sqrt{2}-5}{i+\sqrt{2}} by multiplying numerator and denominator by i-\sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
Square i. Square \sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
Subtract 2 from -1 to get -3.
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
Apply the distributive property by multiplying each term of i\sqrt{2}-5 by each term of i-\sqrt{2}.
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
The square of \sqrt{2} is 2.
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
Multiply -i and 2 to get -2i.
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
Subtract 5i from -2i to get -7i.
\frac{4\sqrt{2}-7i}{-3}
Combine -\sqrt{2} and 5\sqrt{2} to get 4\sqrt{2}.
\frac{-4\sqrt{2}+7i}{3}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}