Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{\left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right)}
Rationalize the denominator of \frac{i\sqrt{2}-5}{i+\sqrt{2}} by multiplying numerator and denominator by i-\sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{i^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(i+\sqrt{2}\right)\left(i-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-1-2}
Square i. Square \sqrt{2}.
\frac{\left(i\sqrt{2}-5\right)\left(i-\sqrt{2}\right)}{-3}
Subtract 2 from -1 to get -3.
\frac{-\sqrt{2}-i\left(\sqrt{2}\right)^{2}-5i+5\sqrt{2}}{-3}
Apply the distributive property by multiplying each term of i\sqrt{2}-5 by each term of i-\sqrt{2}.
\frac{-\sqrt{2}-i\times 2-5i+5\sqrt{2}}{-3}
The square of \sqrt{2} is 2.
\frac{-\sqrt{2}-2i-5i+5\sqrt{2}}{-3}
Multiply -i and 2 to get -2i.
\frac{-\sqrt{2}-7i+5\sqrt{2}}{-3}
Subtract 5i from -2i to get -7i.
\frac{4\sqrt{2}-7i}{-3}
Combine -\sqrt{2} and 5\sqrt{2} to get 4\sqrt{2}.
\frac{-4\sqrt{2}+7i}{3}
Multiply both numerator and denominator by -1.