Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i}{3+2i}
Calculate i to the power of 97 and get i.
\frac{i\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-2i.
\frac{2+3i}{13}
Do the multiplications in \frac{i\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
\frac{2}{13}+\frac{3}{13}i
Divide 2+3i by 13 to get \frac{2}{13}+\frac{3}{13}i.
Re(\frac{i}{3+2i})
Calculate i to the power of 97 and get i.
Re(\frac{i\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)})
Multiply both numerator and denominator of \frac{i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(\frac{2+3i}{13})
Do the multiplications in \frac{i\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
Re(\frac{2}{13}+\frac{3}{13}i)
Divide 2+3i by 13 to get \frac{2}{13}+\frac{3}{13}i.
\frac{2}{13}
The real part of \frac{2}{13}+\frac{3}{13}i is \frac{2}{13}.