Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-i}{1+i}+i^{5}
Calculate i to the power of 3 and get -i.
\frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i^{5}
Multiply both numerator and denominator of \frac{-i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{-1-i}{2}+i^{5}
Do the multiplications in \frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-\frac{1}{2}-\frac{1}{2}i+i^{5}
Divide -1-i by 2 to get -\frac{1}{2}-\frac{1}{2}i.
-\frac{1}{2}-\frac{1}{2}i+i
Calculate i to the power of 5 and get i.
-\frac{1}{2}+\frac{1}{2}i
Add -\frac{1}{2}-\frac{1}{2}i and i to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{-i}{1+i}+i^{5})
Calculate i to the power of 3 and get -i.
Re(\frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i^{5})
Multiply both numerator and denominator of \frac{-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-1-i}{2}+i^{5})
Do the multiplications in \frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-\frac{1}{2}-\frac{1}{2}i+i^{5})
Divide -1-i by 2 to get -\frac{1}{2}-\frac{1}{2}i.
Re(-\frac{1}{2}-\frac{1}{2}i+i)
Calculate i to the power of 5 and get i.
Re(-\frac{1}{2}+\frac{1}{2}i)
Add -\frac{1}{2}-\frac{1}{2}i and i to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{1}{2}i is -\frac{1}{2}.