Evaluate
-\frac{1}{2}+\frac{1}{2}i=-0.5+0.5i
Real Part
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\frac{-i}{1+i}+i^{5}
Calculate i to the power of 3 and get -i.
\frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i^{5}
Multiply both numerator and denominator of \frac{-i}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{-1-i}{2}+i^{5}
Do the multiplications in \frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-\frac{1}{2}-\frac{1}{2}i+i^{5}
Divide -1-i by 2 to get -\frac{1}{2}-\frac{1}{2}i.
-\frac{1}{2}-\frac{1}{2}i+i
Calculate i to the power of 5 and get i.
-\frac{1}{2}+\frac{1}{2}i
Add -\frac{1}{2}-\frac{1}{2}i and i to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{-i}{1+i}+i^{5})
Calculate i to the power of 3 and get -i.
Re(\frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i^{5})
Multiply both numerator and denominator of \frac{-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-1-i}{2}+i^{5})
Do the multiplications in \frac{-i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-\frac{1}{2}-\frac{1}{2}i+i^{5})
Divide -1-i by 2 to get -\frac{1}{2}-\frac{1}{2}i.
Re(-\frac{1}{2}-\frac{1}{2}i+i)
Calculate i to the power of 5 and get i.
Re(-\frac{1}{2}+\frac{1}{2}i)
Add -\frac{1}{2}-\frac{1}{2}i and i to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{1}{2}i is -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}