Evaluate
\frac{4ix}{9}-\frac{4}{3}
Share
Copied to clipboard
\frac{-i\times 3x\left(-3\right)^{-2}+\left(-\frac{1}{9}\right)^{0}}{2^{-2}-1}
Calculate i to the power of -1 and get -i.
\frac{-3ix\left(-3\right)^{-2}+\left(-\frac{1}{9}\right)^{0}}{2^{-2}-1}
Multiply -i and 3 to get -3i.
\frac{-3ix\times \frac{1}{9}+\left(-\frac{1}{9}\right)^{0}}{2^{-2}-1}
Calculate -3 to the power of -2 and get \frac{1}{9}.
\frac{-\frac{1}{3}ix+\left(-\frac{1}{9}\right)^{0}}{2^{-2}-1}
Multiply -3i and \frac{1}{9} to get -\frac{1}{3}i.
\frac{-\frac{1}{3}ix+1}{2^{-2}-1}
Calculate -\frac{1}{9} to the power of 0 and get 1.
\frac{-\frac{1}{3}ix+1}{\frac{1}{4}-1}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{-\frac{1}{3}ix+1}{-\frac{3}{4}}
Subtract 1 from \frac{1}{4} to get -\frac{3}{4}.
\frac{\left(-\frac{1}{3}ix+1\right)\times 4}{-3}
Divide -\frac{1}{3}ix+1 by -\frac{3}{4} by multiplying -\frac{1}{3}ix+1 by the reciprocal of -\frac{3}{4}.
\frac{-\frac{4}{3}ix+4}{-3}
Use the distributive property to multiply -\frac{1}{3}ix+1 by 4.
\frac{\frac{4}{3}ix-4}{3}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}