Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. h
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}h^{1}\right)^{1}\times \frac{1}{\frac{1}{2}h^{2}}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{1}\left(h^{1}\right)^{1}\times \frac{1}{\frac{1}{2}}\times \frac{1}{h^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(\frac{1}{2}\right)^{1}\times \frac{1}{\frac{1}{2}}\left(h^{1}\right)^{1}\times \frac{1}{h^{2}}
Use the Commutative Property of Multiplication.
\left(\frac{1}{2}\right)^{1}\times \frac{1}{\frac{1}{2}}h^{1}h^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(\frac{1}{2}\right)^{1}\times \frac{1}{\frac{1}{2}}h^{1}h^{-2}
Multiply 2 times -1.
\left(\frac{1}{2}\right)^{1}\times \frac{1}{\frac{1}{2}}h^{1-2}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{1}\times \frac{1}{\frac{1}{2}}\times \frac{1}{h}
Add the exponents 1 and -2.
\left(\frac{1}{2}\right)^{1-1}\times \frac{1}{h}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{0}\times \frac{1}{h}
Add the exponents 1 and -1.
1\times \frac{1}{h}
For any term t except 0, t^{0}=1.
\frac{1}{h}
For any term t, t\times 1=t and 1t=t.
\frac{\left(\frac{1}{2}\right)^{1}h^{1}}{\left(\frac{1}{2}\right)^{1}h^{2}}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{1-1}h^{1-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{1}{2}\right)^{0}h^{1-2}
Subtract 1 from 1.
h^{1-2}
For any number a except 0, a^{0}=1.
\frac{1}{h}
Subtract 2 from 1.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{1}{2}}{\frac{1}{2}}h^{1-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})
Do the arithmetic.
-h^{-1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-h^{-2}
Do the arithmetic.