Solve for h
h\geq 2
Share
Copied to clipboard
4\left(h+1\right)+3\left(h-2\right)\geq 12
Multiply both sides of the equation by 12, the least common multiple of 3,4. Since 12 is positive, the inequality direction remains the same.
4h+4+3\left(h-2\right)\geq 12
Use the distributive property to multiply 4 by h+1.
4h+4+3h-6\geq 12
Use the distributive property to multiply 3 by h-2.
7h+4-6\geq 12
Combine 4h and 3h to get 7h.
7h-2\geq 12
Subtract 6 from 4 to get -2.
7h\geq 12+2
Add 2 to both sides.
7h\geq 14
Add 12 and 2 to get 14.
h\geq \frac{14}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
h\geq 2
Divide 14 by 7 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}