Solve for g
g=-7
g=7
Share
Copied to clipboard
\left(g+9\right)g=9g+49
Variable g cannot be equal to any of the values -9,-\frac{49}{9} since division by zero is not defined. Multiply both sides of the equation by \left(g+9\right)\left(9g+49\right), the least common multiple of 9g+49,g+9.
g^{2}+9g=9g+49
Use the distributive property to multiply g+9 by g.
g^{2}+9g-9g=49
Subtract 9g from both sides.
g^{2}=49
Combine 9g and -9g to get 0.
g=7 g=-7
Take the square root of both sides of the equation.
\left(g+9\right)g=9g+49
Variable g cannot be equal to any of the values -9,-\frac{49}{9} since division by zero is not defined. Multiply both sides of the equation by \left(g+9\right)\left(9g+49\right), the least common multiple of 9g+49,g+9.
g^{2}+9g=9g+49
Use the distributive property to multiply g+9 by g.
g^{2}+9g-9g=49
Subtract 9g from both sides.
g^{2}=49
Combine 9g and -9g to get 0.
g^{2}-49=0
Subtract 49 from both sides.
g=\frac{0±\sqrt{0^{2}-4\left(-49\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{0±\sqrt{-4\left(-49\right)}}{2}
Square 0.
g=\frac{0±\sqrt{196}}{2}
Multiply -4 times -49.
g=\frac{0±14}{2}
Take the square root of 196.
g=7
Now solve the equation g=\frac{0±14}{2} when ± is plus. Divide 14 by 2.
g=-7
Now solve the equation g=\frac{0±14}{2} when ± is minus. Divide -14 by 2.
g=7 g=-7
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}