Solve for g
g = -\frac{16}{5} = -3\frac{1}{5} = -3.2
Share
Copied to clipboard
3\left(g+3\right)+2\left(g+2\right)=-3
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3g+9+2\left(g+2\right)=-3
Use the distributive property to multiply 3 by g+3.
3g+9+2g+4=-3
Use the distributive property to multiply 2 by g+2.
5g+9+4=-3
Combine 3g and 2g to get 5g.
5g+13=-3
Add 9 and 4 to get 13.
5g=-3-13
Subtract 13 from both sides.
5g=-16
Subtract 13 from -3 to get -16.
g=\frac{-16}{5}
Divide both sides by 5.
g=-\frac{16}{5}
Fraction \frac{-16}{5} can be rewritten as -\frac{16}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}