Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(g+2\right)\left(2g+1\right)}{\left(g-1\right)\left(2g+1\right)}-\frac{\left(g-3\right)\left(g-1\right)}{\left(g-1\right)\left(2g+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of g-1 and 2g+1 is \left(g-1\right)\left(2g+1\right). Multiply \frac{g+2}{g-1} times \frac{2g+1}{2g+1}. Multiply \frac{g-3}{2g+1} times \frac{g-1}{g-1}.
\frac{\left(g+2\right)\left(2g+1\right)-\left(g-3\right)\left(g-1\right)}{\left(g-1\right)\left(2g+1\right)}
Since \frac{\left(g+2\right)\left(2g+1\right)}{\left(g-1\right)\left(2g+1\right)} and \frac{\left(g-3\right)\left(g-1\right)}{\left(g-1\right)\left(2g+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2g^{2}+g+4g+2-g^{2}+g+3g-3}{\left(g-1\right)\left(2g+1\right)}
Do the multiplications in \left(g+2\right)\left(2g+1\right)-\left(g-3\right)\left(g-1\right).
\frac{g^{2}+9g-1}{\left(g-1\right)\left(2g+1\right)}
Combine like terms in 2g^{2}+g+4g+2-g^{2}+g+3g-3.
\frac{g^{2}+9g-1}{2g^{2}-g-1}
Expand \left(g-1\right)\left(2g+1\right).
\frac{\left(g+2\right)\left(2g+1\right)}{\left(g-1\right)\left(2g+1\right)}-\frac{\left(g-3\right)\left(g-1\right)}{\left(g-1\right)\left(2g+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of g-1 and 2g+1 is \left(g-1\right)\left(2g+1\right). Multiply \frac{g+2}{g-1} times \frac{2g+1}{2g+1}. Multiply \frac{g-3}{2g+1} times \frac{g-1}{g-1}.
\frac{\left(g+2\right)\left(2g+1\right)-\left(g-3\right)\left(g-1\right)}{\left(g-1\right)\left(2g+1\right)}
Since \frac{\left(g+2\right)\left(2g+1\right)}{\left(g-1\right)\left(2g+1\right)} and \frac{\left(g-3\right)\left(g-1\right)}{\left(g-1\right)\left(2g+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2g^{2}+g+4g+2-g^{2}+g+3g-3}{\left(g-1\right)\left(2g+1\right)}
Do the multiplications in \left(g+2\right)\left(2g+1\right)-\left(g-3\right)\left(g-1\right).
\frac{g^{2}+9g-1}{\left(g-1\right)\left(2g+1\right)}
Combine like terms in 2g^{2}+g+4g+2-g^{2}+g+3g-3.
\frac{g^{2}+9g-1}{2g^{2}-g-1}
Expand \left(g-1\right)\left(2g+1\right).