Evaluate
\frac{2f-17n}{24k}
Expand
-\frac{17n-2f}{24k}
Share
Copied to clipboard
\frac{8\left(f-4n\right)}{24k}-\frac{3\left(2f-5n\right)}{24k}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3k and 8k is 24k. Multiply \frac{f-4n}{3k} times \frac{8}{8}. Multiply \frac{2f-5n}{8k} times \frac{3}{3}.
\frac{8\left(f-4n\right)-3\left(2f-5n\right)}{24k}
Since \frac{8\left(f-4n\right)}{24k} and \frac{3\left(2f-5n\right)}{24k} have the same denominator, subtract them by subtracting their numerators.
\frac{8f-32n-6f+15n}{24k}
Do the multiplications in 8\left(f-4n\right)-3\left(2f-5n\right).
\frac{2f-17n}{24k}
Combine like terms in 8f-32n-6f+15n.
\frac{8\left(f-4n\right)}{24k}-\frac{3\left(2f-5n\right)}{24k}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3k and 8k is 24k. Multiply \frac{f-4n}{3k} times \frac{8}{8}. Multiply \frac{2f-5n}{8k} times \frac{3}{3}.
\frac{8\left(f-4n\right)-3\left(2f-5n\right)}{24k}
Since \frac{8\left(f-4n\right)}{24k} and \frac{3\left(2f-5n\right)}{24k} have the same denominator, subtract them by subtracting their numerators.
\frac{8f-32n-6f+15n}{24k}
Do the multiplications in 8\left(f-4n\right)-3\left(2f-5n\right).
\frac{2f-17n}{24k}
Combine like terms in 8f-32n-6f+15n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}