Skip to main content
Solve for f
Tick mark Image
Solve for g
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x^{2}-4+x\right)fx=gx\left(y^{2}-2x+3\right)
Multiply both sides of the equation by 2gx\left(x-\left(-\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right), the least common multiple of gx,2x^{2}+x-4.
\left(2x^{2}f-4f+xf\right)x=gx\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}-4+x by f.
2fx^{3}-4fx+fx^{2}=gx\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}f-4f+xf by x.
2fx^{3}-4fx+fx^{2}=gxy^{2}-2gx^{2}+3gx
Use the distributive property to multiply gx by y^{2}-2x+3.
\left(2x^{3}-4x+x^{2}\right)f=gxy^{2}-2gx^{2}+3gx
Combine all terms containing f.
\left(2x^{3}+x^{2}-4x\right)f=3gx+gxy^{2}-2gx^{2}
The equation is in standard form.
\frac{\left(2x^{3}+x^{2}-4x\right)f}{2x^{3}+x^{2}-4x}=\frac{gx\left(3+y^{2}-2x\right)}{2x^{3}+x^{2}-4x}
Divide both sides by 2x^{3}-4x+x^{2}.
f=\frac{gx\left(3+y^{2}-2x\right)}{2x^{3}+x^{2}-4x}
Dividing by 2x^{3}-4x+x^{2} undoes the multiplication by 2x^{3}-4x+x^{2}.
f=\frac{g\left(3+y^{2}-2x\right)}{2x^{2}+x-4}
Divide xg\left(y^{2}-2x+3\right) by 2x^{3}-4x+x^{2}.
\left(2x^{2}-4+x\right)fx=xg\left(y^{2}-2x+3\right)
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2gx\left(x-\left(-\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right), the least common multiple of gx,2x^{2}+x-4.
\left(2x^{2}f-4f+xf\right)x=xg\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}-4+x by f.
2fx^{3}-4fx+fx^{2}=xg\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}f-4f+xf by x.
2fx^{3}-4fx+fx^{2}=xgy^{2}-2gx^{2}+3xg
Use the distributive property to multiply xg by y^{2}-2x+3.
xgy^{2}-2gx^{2}+3xg=2fx^{3}-4fx+fx^{2}
Swap sides so that all variable terms are on the left hand side.
\left(xy^{2}-2x^{2}+3x\right)g=2fx^{3}-4fx+fx^{2}
Combine all terms containing g.
\left(3x+xy^{2}-2x^{2}\right)g=2fx^{3}+fx^{2}-4fx
The equation is in standard form.
\frac{\left(3x+xy^{2}-2x^{2}\right)g}{3x+xy^{2}-2x^{2}}=\frac{fx\left(2x^{2}+x-4\right)}{3x+xy^{2}-2x^{2}}
Divide both sides by xy^{2}-2x^{2}+3x.
g=\frac{fx\left(2x^{2}+x-4\right)}{3x+xy^{2}-2x^{2}}
Dividing by xy^{2}-2x^{2}+3x undoes the multiplication by xy^{2}-2x^{2}+3x.
g=\frac{f\left(2x^{2}+x-4\right)}{3+y^{2}-2x}
Divide fx\left(2x^{2}-4+x\right) by xy^{2}-2x^{2}+3x.
g=\frac{f\left(2x^{2}+x-4\right)}{3+y^{2}-2x}\text{, }g\neq 0
Variable g cannot be equal to 0.