Solve for f
f=-\frac{g\left(2x-y^{2}-3\right)}{2x^{2}+x-4}
g\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{\sqrt{33}-1}{4}\text{ and }x\neq \frac{-\sqrt{33}-1}{4}
Solve for g
\left\{\begin{matrix}g=-\frac{f\left(2x^{2}+x-4\right)}{2x-y^{2}-3}\text{, }&x\neq \frac{\sqrt{33}-1}{4}\text{ and }x\neq \frac{-\sqrt{33}-1}{4}\text{ and }f\neq 0\text{ and }x\neq \frac{y^{2}+3}{2}\text{ and }x\neq 0\\g\neq 0\text{, }&f=0\text{ and }x=\frac{y^{2}+3}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2x^{2}-4+x\right)fx=gx\left(y^{2}-2x+3\right)
Multiply both sides of the equation by 2gx\left(x-\left(-\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right), the least common multiple of gx,2x^{2}+x-4.
\left(2x^{2}f-4f+xf\right)x=gx\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}-4+x by f.
2fx^{3}-4fx+fx^{2}=gx\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}f-4f+xf by x.
2fx^{3}-4fx+fx^{2}=gxy^{2}-2gx^{2}+3gx
Use the distributive property to multiply gx by y^{2}-2x+3.
\left(2x^{3}-4x+x^{2}\right)f=gxy^{2}-2gx^{2}+3gx
Combine all terms containing f.
\left(2x^{3}+x^{2}-4x\right)f=3gx+gxy^{2}-2gx^{2}
The equation is in standard form.
\frac{\left(2x^{3}+x^{2}-4x\right)f}{2x^{3}+x^{2}-4x}=\frac{gx\left(3+y^{2}-2x\right)}{2x^{3}+x^{2}-4x}
Divide both sides by 2x^{3}-4x+x^{2}.
f=\frac{gx\left(3+y^{2}-2x\right)}{2x^{3}+x^{2}-4x}
Dividing by 2x^{3}-4x+x^{2} undoes the multiplication by 2x^{3}-4x+x^{2}.
f=\frac{g\left(3+y^{2}-2x\right)}{2x^{2}+x-4}
Divide xg\left(y^{2}-2x+3\right) by 2x^{3}-4x+x^{2}.
\left(2x^{2}-4+x\right)fx=xg\left(y^{2}-2x+3\right)
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2gx\left(x-\left(-\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right)\left(x-\left(\frac{1}{4}\sqrt{33}-\frac{1}{4}\right)\right), the least common multiple of gx,2x^{2}+x-4.
\left(2x^{2}f-4f+xf\right)x=xg\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}-4+x by f.
2fx^{3}-4fx+fx^{2}=xg\left(y^{2}-2x+3\right)
Use the distributive property to multiply 2x^{2}f-4f+xf by x.
2fx^{3}-4fx+fx^{2}=xgy^{2}-2gx^{2}+3xg
Use the distributive property to multiply xg by y^{2}-2x+3.
xgy^{2}-2gx^{2}+3xg=2fx^{3}-4fx+fx^{2}
Swap sides so that all variable terms are on the left hand side.
\left(xy^{2}-2x^{2}+3x\right)g=2fx^{3}-4fx+fx^{2}
Combine all terms containing g.
\left(3x+xy^{2}-2x^{2}\right)g=2fx^{3}+fx^{2}-4fx
The equation is in standard form.
\frac{\left(3x+xy^{2}-2x^{2}\right)g}{3x+xy^{2}-2x^{2}}=\frac{fx\left(2x^{2}+x-4\right)}{3x+xy^{2}-2x^{2}}
Divide both sides by xy^{2}-2x^{2}+3x.
g=\frac{fx\left(2x^{2}+x-4\right)}{3x+xy^{2}-2x^{2}}
Dividing by xy^{2}-2x^{2}+3x undoes the multiplication by xy^{2}-2x^{2}+3x.
g=\frac{f\left(2x^{2}+x-4\right)}{3+y^{2}-2x}
Divide fx\left(2x^{2}-4+x\right) by xy^{2}-2x^{2}+3x.
g=\frac{f\left(2x^{2}+x-4\right)}{3+y^{2}-2x}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}