Solve for f
f=-\frac{2\sqrt{3\left(x-4\right)}\left(6-x\right)}{x}
x\neq 6\text{ and }x\geq 4
Graph
Share
Copied to clipboard
fx=2\left(x-6\right)\sqrt{3x-12}
Multiply both sides of the equation by 2\left(x-6\right).
fx=\left(2x-12\right)\sqrt{3x-12}
Use the distributive property to multiply 2 by x-6.
fx=2x\sqrt{3x-12}-12\sqrt{3x-12}
Use the distributive property to multiply 2x-12 by \sqrt{3x-12}.
xf=2\sqrt{3x-12}x-12\sqrt{3x-12}
The equation is in standard form.
\frac{xf}{x}=\frac{2\sqrt{3x-12}\left(x-6\right)}{x}
Divide both sides by x.
f=\frac{2\sqrt{3x-12}\left(x-6\right)}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}