Solve for f
f=\frac{14x}{22025}
x\neq 0
Solve for x
x=\frac{22025f}{14}
f\neq 0
Graph
Share
Copied to clipboard
f\times 4\times 881=2.24x
Multiply both sides of the equation by x.
f\times 3524=2.24x
Multiply 4 and 881 to get 3524.
3524f=\frac{56x}{25}
The equation is in standard form.
\frac{3524f}{3524}=\frac{56x}{25\times 3524}
Divide both sides by 3524.
f=\frac{56x}{25\times 3524}
Dividing by 3524 undoes the multiplication by 3524.
f=\frac{14x}{22025}
Divide \frac{56x}{25} by 3524.
f\times 4\times 881=2.24x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
f\times 3524=2.24x
Multiply 4 and 881 to get 3524.
2.24x=f\times 3524
Swap sides so that all variable terms are on the left hand side.
2.24x=3524f
The equation is in standard form.
\frac{2.24x}{2.24}=\frac{3524f}{2.24}
Divide both sides of the equation by 2.24, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3524f}{2.24}
Dividing by 2.24 undoes the multiplication by 2.24.
x=\frac{22025f}{14}
Divide 3524f by 2.24 by multiplying 3524f by the reciprocal of 2.24.
x=\frac{22025f}{14}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}