Evaluate
\frac{5x^{2}}{8f}+\frac{3x}{8}-\frac{21x}{4f}+\frac{21}{4}
Expand
\frac{5x^{2}}{8f}+\frac{3x}{8}-\frac{21x}{4f}+\frac{21}{4}
Graph
Share
Copied to clipboard
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42}{10-x}+5}+9
Express f^{-1}\times \frac{5x-42}{10-x} as a single fraction.
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42}{10-x}+\frac{5\left(10-x\right)}{10-x}}+9
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{10-x}{10-x}.
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42+5\left(10-x\right)}{10-x}}+9
Since \frac{5x-42}{10-x} and \frac{5\left(10-x\right)}{10-x} have the same denominator, add them by adding their numerators.
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42+50-5x}{10-x}}+9
Do the multiplications in 5x-42+5\left(10-x\right).
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{8}{10-x}}+9
Combine like terms in 5x-42+50-5x.
\frac{\frac{f^{-1}\left(5x-42\right)x}{10-x}-3}{\frac{8}{10-x}}+9
Express \frac{f^{-1}\left(5x-42\right)}{10-x}x as a single fraction.
\frac{\frac{f^{-1}\left(5x-42\right)x}{10-x}-\frac{3\left(10-x\right)}{10-x}}{\frac{8}{10-x}}+9
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{10-x}{10-x}.
\frac{\frac{f^{-1}\left(5x-42\right)x-3\left(10-x\right)}{10-x}}{\frac{8}{10-x}}+9
Since \frac{f^{-1}\left(5x-42\right)x}{10-x} and \frac{3\left(10-x\right)}{10-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5\times \frac{1}{f}x^{2}-42\times \frac{1}{f}x-30+3x}{10-x}}{\frac{8}{10-x}}+9
Do the multiplications in f^{-1}\left(5x-42\right)x-3\left(10-x\right).
\frac{\frac{-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}}{10-x}}{\frac{8}{10-x}}+9
Combine like terms in 5\times \frac{1}{f}x^{2}-42\times \frac{1}{f}x-30+3x.
\frac{\left(-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}\right)\left(10-x\right)}{\left(10-x\right)\times 8}+9
Divide \frac{-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}}{10-x} by \frac{8}{10-x} by multiplying \frac{-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}}{10-x} by the reciprocal of \frac{8}{10-x}.
\frac{\left(-30+3x+\frac{-42x+5x^{2}}{f}\right)\left(10-x\right)}{\left(10-x\right)\times 8}+9
Express \left(-42x+5x^{2}\right)\times \frac{1}{f} as a single fraction.
\frac{\left(\frac{\left(-30+3x\right)f}{f}+\frac{-42x+5x^{2}}{f}\right)\left(10-x\right)}{\left(10-x\right)\times 8}+9
To add or subtract expressions, expand them to make their denominators the same. Multiply -30+3x times \frac{f}{f}.
\frac{\frac{\left(-30+3x\right)f-42x+5x^{2}}{f}\left(10-x\right)}{\left(10-x\right)\times 8}+9
Since \frac{\left(-30+3x\right)f}{f} and \frac{-42x+5x^{2}}{f} have the same denominator, add them by adding their numerators.
\frac{\frac{-30f+3xf-42x+5x^{2}}{f}\left(10-x\right)}{\left(10-x\right)\times 8}+9
Do the multiplications in \left(-30+3x\right)f-42x+5x^{2}.
\frac{\frac{\left(-30f+3xf-42x+5x^{2}\right)\left(10-x\right)}{f}}{\left(10-x\right)\times 8}+9
Express \frac{-30f+3xf-42x+5x^{2}}{f}\left(10-x\right) as a single fraction.
\frac{\left(-30f+3xf-42x+5x^{2}\right)\left(10-x\right)}{f\left(10-x\right)\times 8}+9
Express \frac{\frac{\left(-30f+3xf-42x+5x^{2}\right)\left(10-x\right)}{f}}{\left(10-x\right)\times 8} as a single fraction.
\frac{5x^{2}+3fx-42x-30f}{8f}+9
Cancel out -x+10 in both numerator and denominator.
\frac{5x^{2}+3fx-42x-30f}{8f}+\frac{9\times 8f}{8f}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{8f}{8f}.
\frac{5x^{2}+3fx-42x-30f+9\times 8f}{8f}
Since \frac{5x^{2}+3fx-42x-30f}{8f} and \frac{9\times 8f}{8f} have the same denominator, add them by adding their numerators.
\frac{5x^{2}+3fx-42x-30f+72f}{8f}
Do the multiplications in 5x^{2}+3fx-42x-30f+9\times 8f.
\frac{3fx+5x^{2}-42x+42f}{8f}
Combine like terms in 5x^{2}+3fx-42x-30f+72f.
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42}{10-x}+5}+9
Express f^{-1}\times \frac{5x-42}{10-x} as a single fraction.
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42}{10-x}+\frac{5\left(10-x\right)}{10-x}}+9
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{10-x}{10-x}.
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42+5\left(10-x\right)}{10-x}}+9
Since \frac{5x-42}{10-x} and \frac{5\left(10-x\right)}{10-x} have the same denominator, add them by adding their numerators.
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{5x-42+50-5x}{10-x}}+9
Do the multiplications in 5x-42+5\left(10-x\right).
\frac{\frac{f^{-1}\left(5x-42\right)}{10-x}x-3}{\frac{8}{10-x}}+9
Combine like terms in 5x-42+50-5x.
\frac{\frac{f^{-1}\left(5x-42\right)x}{10-x}-3}{\frac{8}{10-x}}+9
Express \frac{f^{-1}\left(5x-42\right)}{10-x}x as a single fraction.
\frac{\frac{f^{-1}\left(5x-42\right)x}{10-x}-\frac{3\left(10-x\right)}{10-x}}{\frac{8}{10-x}}+9
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{10-x}{10-x}.
\frac{\frac{f^{-1}\left(5x-42\right)x-3\left(10-x\right)}{10-x}}{\frac{8}{10-x}}+9
Since \frac{f^{-1}\left(5x-42\right)x}{10-x} and \frac{3\left(10-x\right)}{10-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5\times \frac{1}{f}x^{2}-42\times \frac{1}{f}x-30+3x}{10-x}}{\frac{8}{10-x}}+9
Do the multiplications in f^{-1}\left(5x-42\right)x-3\left(10-x\right).
\frac{\frac{-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}}{10-x}}{\frac{8}{10-x}}+9
Combine like terms in 5\times \frac{1}{f}x^{2}-42\times \frac{1}{f}x-30+3x.
\frac{\left(-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}\right)\left(10-x\right)}{\left(10-x\right)\times 8}+9
Divide \frac{-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}}{10-x} by \frac{8}{10-x} by multiplying \frac{-30+3x+\left(-42x+5x^{2}\right)\times \frac{1}{f}}{10-x} by the reciprocal of \frac{8}{10-x}.
\frac{\left(-30+3x+\frac{-42x+5x^{2}}{f}\right)\left(10-x\right)}{\left(10-x\right)\times 8}+9
Express \left(-42x+5x^{2}\right)\times \frac{1}{f} as a single fraction.
\frac{\left(\frac{\left(-30+3x\right)f}{f}+\frac{-42x+5x^{2}}{f}\right)\left(10-x\right)}{\left(10-x\right)\times 8}+9
To add or subtract expressions, expand them to make their denominators the same. Multiply -30+3x times \frac{f}{f}.
\frac{\frac{\left(-30+3x\right)f-42x+5x^{2}}{f}\left(10-x\right)}{\left(10-x\right)\times 8}+9
Since \frac{\left(-30+3x\right)f}{f} and \frac{-42x+5x^{2}}{f} have the same denominator, add them by adding their numerators.
\frac{\frac{-30f+3xf-42x+5x^{2}}{f}\left(10-x\right)}{\left(10-x\right)\times 8}+9
Do the multiplications in \left(-30+3x\right)f-42x+5x^{2}.
\frac{\frac{\left(-30f+3xf-42x+5x^{2}\right)\left(10-x\right)}{f}}{\left(10-x\right)\times 8}+9
Express \frac{-30f+3xf-42x+5x^{2}}{f}\left(10-x\right) as a single fraction.
\frac{\left(-30f+3xf-42x+5x^{2}\right)\left(10-x\right)}{f\left(10-x\right)\times 8}+9
Express \frac{\frac{\left(-30f+3xf-42x+5x^{2}\right)\left(10-x\right)}{f}}{\left(10-x\right)\times 8} as a single fraction.
\frac{5x^{2}+3fx-42x-30f}{8f}+9
Cancel out -x+10 in both numerator and denominator.
\frac{5x^{2}+3fx-42x-30f}{8f}+\frac{9\times 8f}{8f}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{8f}{8f}.
\frac{5x^{2}+3fx-42x-30f+9\times 8f}{8f}
Since \frac{5x^{2}+3fx-42x-30f}{8f} and \frac{9\times 8f}{8f} have the same denominator, add them by adding their numerators.
\frac{5x^{2}+3fx-42x-30f+72f}{8f}
Do the multiplications in 5x^{2}+3fx-42x-30f+9\times 8f.
\frac{3fx+5x^{2}-42x+42f}{8f}
Combine like terms in 5x^{2}+3fx-42x-30f+72f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}