Solve for A
A=\frac{ey-\pi x}{xy}
x\neq 0\text{ and }y\neq 0
Solve for x
x=\frac{ey}{Ay+\pi }
y\neq 0\text{ and }\left(A=0\text{ or }y\neq -\frac{\pi }{A}\right)
Graph
Share
Copied to clipboard
ye-x\pi =Axy
Multiply both sides of the equation by xy, the least common multiple of x,y.
Axy=ye-x\pi
Swap sides so that all variable terms are on the left hand side.
Axy=-\pi x+ey
Reorder the terms.
xyA=ey-\pi x
The equation is in standard form.
\frac{xyA}{xy}=\frac{ey-\pi x}{xy}
Divide both sides by xy.
A=\frac{ey-\pi x}{xy}
Dividing by xy undoes the multiplication by xy.
A=\frac{e}{x}-\frac{\pi }{y}
Divide ey-\pi x by xy.
ye-x\pi =Axy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
ye-x\pi -Axy=0
Subtract Axy from both sides.
-x\pi -Axy=-ye
Subtract ye from both sides. Anything subtracted from zero gives its negation.
\left(-\pi -Ay\right)x=-ye
Combine all terms containing x.
\left(-Ay-\pi \right)x=-ey
The equation is in standard form.
\frac{\left(-Ay-\pi \right)x}{-Ay-\pi }=-\frac{ey}{-Ay-\pi }
Divide both sides by -\pi -yA.
x=-\frac{ey}{-Ay-\pi }
Dividing by -\pi -yA undoes the multiplication by -\pi -yA.
x=\frac{ey}{Ay+\pi }
Divide -ye by -\pi -yA.
x=\frac{ey}{Ay+\pi }\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}