Evaluate
\frac{2f\left(2f-5e\right)\left(2f+e\right)}{3e\left(e-3f\right)\left(2f+5e\right)}
Expand
-\frac{2\left(5e^{2}f+8ef^{2}-4f^{3}\right)}{3\left(2f+5e\right)\left(e^{2}-3ef\right)}
Share
Copied to clipboard
\frac{\left(e+2f\right)\left(4f^{2}-10ef\right)}{\left(5e+2f\right)\left(3e^{2}-9ef\right)}
Multiply \frac{e+2f}{5e+2f} times \frac{4f^{2}-10ef}{3e^{2}-9ef} by multiplying numerator times numerator and denominator times denominator.
\frac{e\left(4f^{2}-10ef\right)+2f\left(4f^{2}-10ef\right)}{\left(5e+2f\right)\left(3e^{2}-9ef\right)}
Use the distributive property to multiply e+2f by 4f^{2}-10ef.
\frac{e\left(4f^{2}-10ef\right)+2f\left(4f^{2}-10ef\right)}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply 5e+2f by 3e^{2}-9ef.
\frac{4ef^{2}-10fe^{2}+2f\left(4f^{2}-10ef\right)}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply e by 4f^{2}-10ef.
\frac{4ef^{2}-10fe^{2}+8f^{3}-20ef^{2}}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply 2f by 4f^{2}-10ef.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Combine 4ef^{2} and -20ef^{2} to get -16ef^{2}.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{15e^{3}-45e^{2}f+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply 5e by 3e^{2}-9ef.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{15e^{3}-45e^{2}f+6e^{2}f-18ef^{2}}
Use the distributive property to multiply 2f by 3e^{2}-9ef.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{15e^{3}-39e^{2}f-18ef^{2}}
Combine -45e^{2}f and 6e^{2}f to get -39e^{2}f.
\frac{\left(e+2f\right)\left(4f^{2}-10ef\right)}{\left(5e+2f\right)\left(3e^{2}-9ef\right)}
Multiply \frac{e+2f}{5e+2f} times \frac{4f^{2}-10ef}{3e^{2}-9ef} by multiplying numerator times numerator and denominator times denominator.
\frac{e\left(4f^{2}-10ef\right)+2f\left(4f^{2}-10ef\right)}{\left(5e+2f\right)\left(3e^{2}-9ef\right)}
Use the distributive property to multiply e+2f by 4f^{2}-10ef.
\frac{e\left(4f^{2}-10ef\right)+2f\left(4f^{2}-10ef\right)}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply 5e+2f by 3e^{2}-9ef.
\frac{4ef^{2}-10fe^{2}+2f\left(4f^{2}-10ef\right)}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply e by 4f^{2}-10ef.
\frac{4ef^{2}-10fe^{2}+8f^{3}-20ef^{2}}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply 2f by 4f^{2}-10ef.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{5e\left(3e^{2}-9ef\right)+2f\left(3e^{2}-9ef\right)}
Combine 4ef^{2} and -20ef^{2} to get -16ef^{2}.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{15e^{3}-45e^{2}f+2f\left(3e^{2}-9ef\right)}
Use the distributive property to multiply 5e by 3e^{2}-9ef.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{15e^{3}-45e^{2}f+6e^{2}f-18ef^{2}}
Use the distributive property to multiply 2f by 3e^{2}-9ef.
\frac{-16ef^{2}-10fe^{2}+8f^{3}}{15e^{3}-39e^{2}f-18ef^{2}}
Combine -45e^{2}f and 6e^{2}f to get -39e^{2}f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}