\frac { d y } { d x } = v + \frac { x d v } { d x }
Solve for d
d\neq 0
v=0\text{ and }x\neq 0\text{ and }d\neq 0
Solve for v
v=0
d\neq 0\text{ and }x\neq 0
Share
Copied to clipboard
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=dxv+xdv
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dx.
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=2dxv
Combine dxv and xdv to get 2dxv.
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}-2dxv=0
Subtract 2dxv from both sides.
\left(x\frac{\mathrm{d}(y)}{\mathrm{d}x}-2xv\right)d=0
Combine all terms containing d.
\left(-2vx\right)d=0
The equation is in standard form.
d=0
Divide 0 by -2xv.
d\in \emptyset
Variable d cannot be equal to 0.
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=dxv+xdv
Multiply both sides of the equation by dx.
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=2dxv
Combine dxv and xdv to get 2dxv.
2dxv=dx\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
2dxv=0
The equation is in standard form.
v=0
Divide 0 by 2dx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}