Skip to main content
Solve for d
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(y)=ky^{2}-kyd
Use the distributive property to multiply ky by y-d.
ky^{2}-kyd=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
-kyd=\frac{\mathrm{d}}{\mathrm{d}x}(y)-ky^{2}
Subtract ky^{2} from both sides.
-dky=\frac{\mathrm{d}}{\mathrm{d}x}(y)-ky^{2}
Reorder the terms.
\left(-ky\right)d=-ky^{2}
The equation is in standard form.
\frac{\left(-ky\right)d}{-ky}=-\frac{ky^{2}}{-ky}
Divide both sides by -ky.
d=-\frac{ky^{2}}{-ky}
Dividing by -ky undoes the multiplication by -ky.
d=y
Divide -ky^{2} by -ky.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=ky^{2}-kyd
Use the distributive property to multiply ky by y-d.
ky^{2}-kyd=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
\left(y^{2}-yd\right)k=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Combine all terms containing k.
\left(y^{2}-dy\right)k=0
The equation is in standard form.
k=0
Divide 0 by y^{2}-yd.