Solve for a
\left\{\begin{matrix}\\a=y\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&y=0\text{ or }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}\\k=0\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&y=a\text{ or }y=0\end{matrix}\right.
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}-\left(-k\right)ya
Use the distributive property to multiply \left(-k\right)y by y-a.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}+kya
Multiply -1 and -1 to get 1.
\left(-k\right)y^{2}+kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)-\left(-k\right)y^{2}
Subtract \left(-k\right)y^{2} from both sides.
kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)+ky^{2}
Multiply -1 and -1 to get 1.
kya=ky^{2}
The equation is in standard form.
\frac{kya}{ky}=\frac{ky^{2}}{ky}
Divide both sides by ky.
a=\frac{ky^{2}}{ky}
Dividing by ky undoes the multiplication by ky.
a=y
Divide ky^{2} by ky.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}-\left(-k\right)ya
Use the distributive property to multiply \left(-k\right)y by y-a.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}+kya
Multiply -1 and -1 to get 1.
\left(-k\right)y^{2}+kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
-ky^{2}+aky=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Reorder the terms.
\left(-y^{2}+ay\right)k=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Combine all terms containing k.
\left(ay-y^{2}\right)k=0
The equation is in standard form.
k=0
Divide 0 by -y^{2}+ay.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}