Skip to main content
Solve for a
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}-\left(-k\right)ya
Use the distributive property to multiply \left(-k\right)y by y-a.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}+kya
Multiply -1 and -1 to get 1.
\left(-k\right)y^{2}+kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)-\left(-k\right)y^{2}
Subtract \left(-k\right)y^{2} from both sides.
kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)+ky^{2}
Multiply -1 and -1 to get 1.
kya=ky^{2}
The equation is in standard form.
\frac{kya}{ky}=\frac{ky^{2}}{ky}
Divide both sides by ky.
a=\frac{ky^{2}}{ky}
Dividing by ky undoes the multiplication by ky.
a=y
Divide ky^{2} by ky.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}-\left(-k\right)ya
Use the distributive property to multiply \left(-k\right)y by y-a.
\frac{\mathrm{d}}{\mathrm{d}x}(y)=\left(-k\right)y^{2}+kya
Multiply -1 and -1 to get 1.
\left(-k\right)y^{2}+kya=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Swap sides so that all variable terms are on the left hand side.
-ky^{2}+aky=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Reorder the terms.
\left(-y^{2}+ay\right)k=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Combine all terms containing k.
\left(ay-y^{2}\right)k=0
The equation is in standard form.
k=0
Divide 0 by -y^{2}+ay.