\frac { d y } { d x } = \frac { d y } { x ( y - x ) }
Solve for d
\left\{\begin{matrix}d=0\text{, }&x\neq 0\text{ and }y\neq x\\d\in \mathrm{R}\text{, }&y=0\text{ and }x\neq 0\end{matrix}\right.
Solve for x
x\in \mathrm{R}\setminus 0,y
y=0\text{ or }d=0
Share
Copied to clipboard
x\left(-x+y\right)\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Multiply both sides of the equation by x\left(-x+y\right).
\left(-x^{2}+xy\right)\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Use the distributive property to multiply x by -x+y.
-x^{2}\frac{\mathrm{d}(y)}{\mathrm{d}x}+xy\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Use the distributive property to multiply -x^{2}+xy by \frac{\mathrm{d}(y)}{\mathrm{d}x}.
dy=-x^{2}\frac{\mathrm{d}(y)}{\mathrm{d}x}+xy\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
yd=0
The equation is in standard form.
d=0
Divide 0 by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}