Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
\frac { d y } { d x } = \frac { d y } { x ( y - x ) }
Solve for d
\left\{\begin{matrix}d=0\text{, }&x\neq 0\text{ and }y\neq x\\d\in \mathrm{R}\text{, }&y=0\text{ and }x\neq 0\end{matrix}\right.
View solution steps
Steps for Solving Linear Equation
\frac { d y } { d x } = \frac { d y } { x ( y - x ) }
Multiply both sides of the equation by x\left(-x+y\right).
x\left(-x+y\right)\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Use the distributive property to multiply x by -x+y.
\left(-x^{2}+xy\right)\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Use the distributive property to multiply -x^{2}+xy by \frac{\mathrm{d}(y)}{\mathrm{d}x}.
-x^{2}\frac{\mathrm{d}(y)}{\mathrm{d}x}+xy\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Swap sides so that all variable terms are on the left hand side.
dy=-x^{2}\frac{\mathrm{d}(y)}{\mathrm{d}x}+xy\frac{\mathrm{d}(y)}{\mathrm{d}x}
The equation is in standard form.
yd=0
Divide 0 by y.
d=0
Solve for x
x\in \mathrm{R}\setminus 0,y,y=0\text{ or }d=0
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { d y } { d x } = \frac { d y } { x ( y - x ) }
Similar Problems from Web Search
How to solve homogeneous DE: \frac{dy}{dx} \ = \frac{y-x}{y+x}
https://www.quora.com/How-do-I-solve-homogeneous-DE-frac-dy-dx-frac-y-x-y+x
Let's simplify it. First dy/dx = (y/x - 1)/(y/x + 1) Taking y = vx dy/dx = v + xdv/dx Therefore, -dx/x = (v + 1)dv / (v^2 + 1) Integrating we get log (1/x) + logc = arctan (y/x) + 1/2 log ...
How to show that \frac{dy}{dx}=\frac{dy}{d(x-c)}?
https://math.stackexchange.com/questions/2563987/how-to-show-that-fracdydx-fracdydx-c/2563991
Note that if z=x-c then the chain rules says that \frac{dy}{dz} = \frac{dy}{dx}\cdot \frac{dx}{dz} = \frac{\frac{dy}{dx}}{dz/dx}=\frac{dy}{dx}.
Solving a separable integral equation: y(x) = 1+\int_{1}^{x} \frac{y(t)dt}{t(t+1)}dt
https://math.stackexchange.com/questions/1773755/solving-a-separable-integral-equation-yx-1-int-1x-fracytdttt
From y = e^{\ln|x|-\ln|x+1|+\ln|2|} you may write y = e^{\ln|2x|-\ln|x+1|}=e^{\ln\left|\frac{2x}{x+1}\right|}= \frac{2x}{x+1}.
Integration of Particle Motion
https://math.stackexchange.com/q/2199196
As WW1 pointed before, make \frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=\frac{dv}{dx}v=k(1+3x^2). Now, you have a separable differential equation that you can solve easily integrating \int vdv=\int k(1+x^2), ...
Why does the substitution y=vx^m solve an Isobaric ODE?
https://math.stackexchange.com/questions/922677/why-does-the-substitution-y-vxm-solve-an-isobaric-ode
First make the substitution, that is: x^{m}\frac{dv}{dx}+mx^{m-1}v=\frac{A(x,vx^{m})}{B(x,vx^{m})}=\frac{x^{m-1}A(1,v)}{B(1,v)}=x^{m-1}C(v) Which rearranges to x^{m}dv+\left(mx^{m-1}v-x^{m-1}C(v)\right)dx=0 ...
How to continue to find a solution to the PDE?
https://math.stackexchange.com/q/2772846
\frac{\partial u}{\partial x}+ (-x) \frac{\partial u}{\partial y}= x u \frac{dx}{1}=\frac{dy}{-x}=\frac{du}{xu} First characteristics, from \quad\frac{dx}{1}=\frac{dy}{-x} : 2y+x^2=c_1 ...
More Items
Share
Copy
Copied to clipboard
x\left(-x+y\right)\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Multiply both sides of the equation by x\left(-x+y\right).
\left(-x^{2}+xy\right)\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Use the distributive property to multiply x by -x+y.
-x^{2}\frac{\mathrm{d}(y)}{\mathrm{d}x}+xy\frac{\mathrm{d}(y)}{\mathrm{d}x}=dy
Use the distributive property to multiply -x^{2}+xy by \frac{\mathrm{d}(y)}{\mathrm{d}x}.
dy=-x^{2}\frac{\mathrm{d}(y)}{\mathrm{d}x}+xy\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
yd=0
The equation is in standard form.
d=0
Divide 0 by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top